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Frequency Domain and Filtering

3.1 Introduction

Comovement and volatility are key concepts in macroeconomics. Therefore,
it is important to have statistics that describe the amount of volatility and
the extend to which variables move together. The impulse response func-
tions one obtains from structural Vector Autoregressive models (VARs)
describe with how much each variable responds to structural shocks and
how the variables morve together. One couldn’t ask for more! The problem
is that one needs assumptions to identify these impulse response functions
and the value of the estimated impulse response functions depends on how
realistic the assumptions of the structural VAR are.1 A less ambitious ap-
proach to describe the comovement and volatilities is to calculate correla-
tion coefficients and variances. The problem is that many macroeconomic
series are not stationary, which means that moments are not defined.
Consequently, in order to calculate moments one has to at least first

"extract" the non-stationary" part from the series. But even if data series
are stationary, one may want to extract particular types of fluctuations
out of the data. For example, if an economic model–say a model to ex-
plain business cycles–ignores seasonal fluctuations, then one would like to
extract the seasonal component out of the data before one compares the

1Besides the identification assumption, one also has to take a stand on when to
truncate the lag structure, since with a finite amount of data one can only estimate so
many lags. Especially for long-run restrictions, the truncation may affect the results.
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properties of the model with the properties of the data. Similarly, if the
model is designed to model business cycle fluctuations, but is not meant
to describe longer-term fluctuations, then one would like to extract these
longer-term fluctuations from the data and from the data generated by the
model. This way one compares that part of the observed data with that
part of the generated data that the model was intended to model.
These informal statements can be made precise if one describes stochastic

processes in the frequency domain instead of the time-series domain

3.2 Fouriers transforms

In this section, I give some definitions. Don’t worry if these definitions look
weird, but they turn out to be very useful concept. Consider an infinite se-
quence of absolutely summable Numbers, {γj}∞j=−∞. The fourier transform
of this sequence is defined as

Fx(ω) =
∞X

j=−∞
γje
−iωj . (3.1)

The Riesz-Fischer theorem guarantees that the fourier transform exists
(and that truncated versions of the spectrum converge towards it). If γj =
γ−j , then the fourier transform can also be written as

Fx(ω) = γ0 +
∞X
j=1

γj(e
−iωj + eiωj)

= γ0 +
∞X
j=1

2γj cos(jω)

(3.2)

where the first equality follows from the fact that γj = γ−j and the last
equality from Euler’s formula which says you can write e−iωj as

e−iωj = cos(ωj)− i sin(ωj). (3.3)

Using the fourier transform, you can go from the autocovariances to the
spectrum. But the Converse of the Riesz-Fischer theorem makes clear that
you can also go from the fourier transform to the original numbers. That
is,

γh =
1

2π

πZ
−π

Fx(ω)e
iωhdω. (3.4)
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Proof of the Converse of the Riesz-Fischer theorem

When we substitute the definition of the fourier transform into (3.4) we get

1

2π

∞X
j=−∞

γj

πZ
−π

e−iωjeiωhdω (3.5)

Note that

πZ
−π

e−iωjeiωhdω =

πZ
−π

eiω(h−j)dω⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
=

πZ
−π

1dω = 2π if h = j

=

πZ
−π

(cos(ω(h− j)) + i sin(ω(h− j))) dω = 0 if h 6= j

(3.6)

Using these in Equation (3.5) we get (3.4).¥

3.3 Frequency versus Time-series domain

Thinking of a time series in the time-series domain is very natural. The
value of a variable yt is determined by factors that were already known in
period t− 1 and an innovation. That is,

xt = E [xt|It−1] + εt, (3.7)

where E[xt|It−1] is the expectation of xt conditional on information avail-
able in period t− 1. An important building block of time-series analysis is
the Wold decomposition that says that any covariance stationary stochastic
process xt can be written as

xt = a+
∞X
j=0

bjet−j + ηt, (3.8)

where b0 = 1,Σ∞j=1b
2
j < ∞, Ee2t = σ2 ≥ 0, Eetes = 0 for t 6= s, Eet = 0,

Eηtes = 0 ∀t, s, and ηt is linearly deterministic. Make sure to understand
the difference between εt in (3.7) and et in (3.8). The innovation εt is
independent of any variables in the information set in period t−1, whereas
the innovation et is only not correlated with any of the past innovations.
But do not worry about the ηt term. That is just to be formal and hardly
ever shows up in anything we use.
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Now consider the fourier transform of a finite data set, {xt}Tt=1, scaled
by
√
T

x̃(ω) =
1√
T

TX
t=1

e−iωtxt. (3.9)

Again, there is an inverse Fourier tranform. Let

ωj = (j − 1)2π/T, (3.10)

that is,the values of ωj used are spread evenly across the unit circle. The
finite inverse Fourier transform is given by

xt =
1√
T

X
ωj

eiωjtx̃(ωj). (3.11)

You can find a proof in Cochrane’s notes (Section 9.1). Define φ(ω) implic-
itly by

x̃(ω) = |x̃(ω)| eiφ(ω). (3.12)

The series xt can now be written as

xt =
1√
T

⎛⎝x̃(0) + 2
X
ωj<π

|x̃(ωj)| cos(ωjt+ φ(ωj)

⎞⎠ (3.13)

That is, the data can be represented as a series of cosine waves of frequency
ωj that are magnified by |x̃(ωj)| and shifted by φ(ωj). If ωj is low then
cos(ωjt) corresponds to waves with very long cycles and when ωj is high
then we get waves with very short cycles. Recall that the length of the
cycle is called the period, and the period is equal to 2π/ω. The cosine
waves with higher values of |x̃(ωj)| are obviously more important for the
total fluctuations in xt.
The fact that a time series can be described by a weighted combination

of "waves" with different frequencies, suggests two things. First, it suggests
that we can determine which waves are more important, that is, we can
determine whether waves with short cycles or waves with long cycles are
more important for the behavior of xt. Second, it suggests that we can
extract that part of the series associated with the frequencies we are not
interested in. The next two sections will make clear that these conjectures
are correct.

3.4 The spectrum

Let xt be a scalar covariance-stationary process with absolutely summable
autocovariances and let γj be the j

th autocovariance. Note that γ0 is the
variance. Then the spectrum is defined as
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Sx(ω) =
1

2π

∞X
j=−∞

γje
−iωj . (3.14)

Σ∞j=−∞γje
−iωj is the Fourier transform of the series

©
γj
ª
. So, the spectrum

is the Fourier transform of the autocovariances (divided by 2π). The Riesz-
Fischer theorem guarantees that the spectrum exists (and that truncated
versions of the spectrum converge towards it). The spectrum can also be
written as

Sx(ω) =
1
2πγ0 +

∞X
j=1

γj(e
−iωj + eiωj)

= 1
2πγ0 +

∞X
j=1

2γj cos(jω)

(3.15)

where the first equality follows from the fact that γj = γ−j and the last
equality from Euler’s formula which says you can write e−iωj as

e−iωj = cos(ωj)− i sin(ωj). (3.16)

Using the Fourier transform, you can go from the autocovariances to the
spectrum. But the Converse of the Riesz-Fischer theorem makes clear that
you can also go from the spectrum to the autocovariances. That is,

πZ
−π

Sx(ω)e
iωhdω = γh. (3.17)

Spectrum and variance

If we apply the converse of the Riesz-Fischer theorem for h = 0 we get

πZ
−π

Sx(ω)dω = γ0 or 2

πZ
0

Sx(ω)dω = γ0, (3.18)

where the second expression follows from the fact that the spectrum is
symmetric. That is, if we integrate the spectrum over all frequencies, then
we get the variance. But note that we can also integrate the spectrum over
some frequencies. For example, suppose that we are interested in determin-
ing how important business cycle fluctuations are for the volatility of xt.
Business cycle fluctuations are typically defined as those fluctuations that
have a period (length of the cycle) that is less than 8 years. If one has
quarterly data, then this would correspond with a period of less than 32
quarters or frequencies larger than 2π/32. The variance of xt that is due
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to business cycle frequencies, γ0,bc is thus equal to

γ0,bc = 2

πZ
π/16

Sx(ω)dω, (3.19)

whereas the variance of xt that is due to lower frequency cycles is equal to

γ0,non−bc = 2

π/16Z
0

Sx(ω)dω. (3.20)

Note that the two variance measures add up to the variance of xt.

Deeper stuff

How is the Spectrum related to the frequency domain representation of xt
given above in 3.13? Unfortunately, this is not that easy to show although
the result that the spectrum integrates to the total variance already indi-
cates that there is likely to be a link. In fact, it can be shown that Sx(ω)
is equal to |x̃(ω)|, that is the factor in the frequency domain representa-
tion that measure the importance of a particular cosine wave is exactly the
value of the Spectrum.2 That |x̃(ω)| is related to the sum of covariances
is not that surprising if you realize that x̃(ω) is defined as the (weighted)
sum of xt. The value of |x̃(ω)| which is equal to x̃(ω) and its conjugate is
thus related to the product of the two sums. This gives you all the autoco-
variances.

Easy way to find the spectrum

Consider the process

yt =
∞X

j=−∞
bjxt−j = b(L)xt. (3.21)

Note that xt could be any stationary process. Then the spectrum of yt is
given by

Sy(ω) =
¯̄
b(e−iω)

¯̄2
Sx(ω), (3.22)

where
¯̄
b(e−iω)

¯̄
is the norm of b(e−iω). A proof is given in the appendix.

For example, suppose that xt = εt is white noise. It is easy to calculate
that the spectrum of a white noise process is equal to

Sε(ω) =
σ2ε
2π

. (3.23)

2You can find the proof in Cochrane.
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If yt is an AR(1) process, that is, yt = ρyyt−1 + εt or yt = (1− ρyL)
−1εt,

then

Sy(ω) =

¯̄̄̄
1

1− ρye
−iω

¯̄̄̄2
σ2ε
2π

(3.24)

=

µ
1

1− ρye
−iω

¶µ
1

1− ρye
+iω

¶
σ2ε
2π

(3.25)

=
1

1− ρy(e
+iω + e−iω) + ρ2y

σ2ε
2π

(3.26)

=
1

1− 2ρy cosω + ρ2y

σ2ε
2π

(3.27)

If zt = (1− ρzL)
−1yt one would get

Sz(ω) =
1

1− 2ρz cosω + ρ2z

1

1− 2ρy cosω + ρ2y

σ2ε
2π

(3.28)

Filters

In this section, we show how we can construct filters that extract that part
of xt that is associated with particular frequency bands. For example, we
will show how to decompose xt so that xt = xbct + xnon−bct , xbct is the part
that is associated with business cycle frequencies (ω ≥ π/16), and xnon−bct

is the part that is associated with lower frequencies (ω < π/16).
Filters have the following form

xft =
∞X

j−−∞
bjxt−j = b(L)xt. (3.29)

Above, we showed that it is very easy to get the spectrum of xft . In partic-
ular,

Sxf (ω) =
¯̄
b(e−iω)

¯̄2
Sx(ω), (3.30)

where
¯̄
b(e−iω)

¯̄
is the norm of b(e−iω) or the gain of the filter.

Consider the first-difference filter as an example. That is,

xft = ∆xt = xt − xt−1 = (1− L)xt. (3.31)

Then

S∆x(ω) =
¯̄
(1− e−iω)

¯̄2
Sx(ω).

The term
¯̄
(1− e−iω)

¯̄2
is increasing in ω. In particular,

¯̄
(1− e−i×0)

¯̄2
= 0

and
¯̄
(1− e−i×π)

¯̄2
= 4. Recall that the spectrum reveals the importance
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of different frequencies. Since for lower frequencies the gain of the filter
is less than one, the first-difference filter reduces the importance of these
frequencies. Since for higher frequencies the gain of the filter is bigger than
one, the first-difference filter reinforces the importance of these frequencies.
If a series is subject to a lot of measurement error, which is typically a
high-frequency phenomenon, then it would not be a good idea to use the
first-difference filter, since it would emphasize the measurement error.

Constructing the ideal filter

Suppose I would like to "take out" that part of the series xt that is associ-
ated with frequencies between ω1 and ω2. This is called a band-pass filter,
since everything in the band [ω1, ω2] passes through the filter. Another way
of saying the same thing is that I want

Sxf (ω) = Sx(ω) if ω ∈ [ω1, ω2]

and

Sxf (ω) = 0 if ω ∈ [0, ω1) ∪ (ω2, π].

Using the relationship in Equation (3.30), we can accomplish this if the
gain of the filter satisfies

¯̄
b(e−iω)

¯̄
= 1 if ω ∈ [ω1, ω2]

and

¯̄
b(e−iω)

¯̄
= 0 if ω ∈ [0, ω1) ∪ (ω2, π].

This would be accomplished if

b(e−iω) = b(e+iω) = 1 if ω ∈ [ω1, ω2]

and

b(e−iω) = b(e+iω) = 0 if ω ∈ [0, ω1) ∪ (ω2, π].

Note that b(e−iω) is the Fourier transform of the bj coefficients.3 But this
means that if we know b(e−iω), we can use the converse of the Riesz-Fischer

3That is, it is like a spectrum but we are only not dividing by 2π. Since b(e−iω) is
not a spectrum, we divide by 2π in the expression for bj below.
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theorem to back out the bj coefficients. In particular, we have

bj =
1

2π

πZ
−π

b(e−iω)e+iωjdω

=
1

2π

πZ
0

£
b(e−iω)e+iωj + b(e+iω)e−iωj

¤
dω

=
1

2π

⎛⎝ ω1Z
0

0dω +

ω2Z
ω1

1×
£
e−iωj + e+iωj

¤
dω +

πZ
0

0dω

⎞⎠
=

1

π

ω2Z
ω1

cos(ωj)dω

=
1

π

Ã
sin(ωj)

j

¯̄̄̄ω2
ω1

!
.

This gives

bj =
sinω2j − sinω1j

πj
(3.32)

To evaluate bj you have to use L’Hopital’s rule and you get

b0 =
ω2 − ω1

π
(3.33)

Note that the only inputs of our filtering process are the two boundary
values ω1 and ω2. For these two inputs we can easily calculate the coeffi-
cients of the band-pass filter. Note that ω1 could be 0 in which case the
filter is also called a low-pass filter and ω2 could be equal to π in which
case the filter is also called a high-pass filter.
There is only one problem and that is that the filter is an infinite-order

two-sided filter. If you want to apply this filter to a data series with fi-
nite length, we have to truncate it. Below, we will show how to do this,
but before we do, we make a short digression and talk about integrated
processes.

I(1) processes

We know that many macroeconomic processes are I(1) processes. A process
yt is I(1) if yt − yt−1 is stationary. Let yt = Σ∞j=0ajεt−j = a(L)εt, where εt
is white noise. For an integrated process, a(1), i.e., the infinite sum of the
aj coefficients, is infinite.
Above, we defined the spectrum for stationary processes, but that doesn’t

mean that the analysis above doesn’t apply (without some modification) to
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I(1) processes. One must be a little bit careful though. Consider the process
yρ,t that satisfies

yρ,t =
1

1− ρL
xt (3.34)

If xt is a stationary process and |ρ| < 1 then yρ,t is a stationary process.
Consequently, the spectrum of yρ,t is well defined. In particular,

Sρ,y(ω) =
1

1− 2ρ cosω + ρ2
Sx(ω) (3.35)

If ρ is equal to 1, then yρ,t is an I(1) variable. Moreover, if ρ = 1 and
ω = 0 then the spectrum clearly is not well-defined. Note however that for
all other values of ω the spectrum is well defined even if ρ = 1. In other
words, the spectrum of an I(1) process goes to infinity as ω goes to zero.
This is very intuitive. It basically says that cycles with an infinite cycle
(i.e. permanent effects) get an infinite weight.
Now suppose that we have an I(1) process yt and we apply the filter

b(L). What do we know about the spectrum of the filtered series b(L)yt?
We know that we can write an I(1) process as

yt =
1

1− L
xt,

where xt is a stationary process. If it was the case that our filter b(L) could
be written as

b(L) = (1− L)b(L)

with b(1) < ∞
then we know that our filtered series is stationary? Why? Just combine the
formulas.

yft = b(L)yt

= (1− L)b(L)yt

=
(1− L)b(L)

1− L
xt

= b(L)xt

When is it possible to write b(L) as

b(L) = (1− L)b(L)

with b(1) < ∞? This would be the case if L = 1 is a root of b(L). That
is, we need b(1) = 0. So, if a filter has the property that b(1) = 0, then if
would make a non-stationary series stationary. One obvious filter that has
this property is the first-difference filter, 1− L.
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Constructing a practical filter.

Above we derived the formulas for our band pass filter. The problem is
that it was a two-sided infinite-order filter, so we have to truncate the
filter. Fortunately, the coefficients approach zero, but since they wouldn’t
be zero at any finite lag (lead) we do make an approximation error. One
obvious approach would be to simply use

xft = b(L)xt =
JX

j=−J
bjxt−j with bj = bj (3.36)

But from the discussion in the last subsection, we know that it would be
nice if the practical filter b(L) has the property that b(1) = 0. If true, then
it would transform I(1) processes into stationary processes. The ideal filter
has this property, but the truncated does not necessarily have this property.
So besides the truncation, we also have to do a minor correction to ensure
that b(1) = 0, that is, we have to ensure that the coefficients of b(L) add
up to zero. But this is easy to do. Let

μb =

−
JX

j=−J
bj

2J + 1

Now define the practical filter as

xft = b(L)xt =
JX

j=−J
bjxt−j with bj = bj + μb. (3.37)

3.5 Hodrick-Prescott filter

A very popular filter in macroeconomics is the Hodrick-Prescott filter. For
a process xt it defines a trend term xτ,t. The cyclical term is then given by
xc,t = xt − xτ,t. The trend term is defined as follows

min
{xτ,t}Tt=1

T−1X
t=2

(xt − xτ,t)
2 + λ

T−1X
t=2

n
[(xτ,t+1 − xτ,t)− (xτ,t − xτ,t−1)]

2
o

with λ > 0. The first terms says that it helps the optimization if the trend,
xτ,t is a good fit for the actual series. The second term says that from one
period to the next the change in the trend term cannot fluctuate too much.
If you would set xτ,t = xt then you set the first term equal to zero, but
then the trend term is likely to fluctuate a lot, which means that the second
term, i.e., the penalty term is high.
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For quarterly data it is common to use λ = 1600. It turns out that this
filter is very close to a low-pass filter that lets through all frequencies less
than π/16. This means that the residual xt − xτ,t would correspond to
business cycle frequencies.

3.6 Appendix

3.6.1 Spectrum of yt = b(L)xt

The kth autocovariance of yt, γk(y) is given by

γk(y) = E [ytyt−k] = E

⎡⎣X
j1

bj1xt−j1
X
j2

bj2xt−k−j2

⎤⎦
=
X
j1,j2

bj1bj2E [xt−j1xt−k−j2 ] =
X
j1,j2

bj1bj2γj1−k−j2(x).

Let h = k + j2 − j1. Then

Sy(ω) =
1

2π

X
k

γk(y)e
−iωk

=
1

2π

X
k,j1,j2

e−iωkbj1bj2γj1−k−j2(x)

=
1

2π

X
h,j1,j2

e−iω(h+j1−j2)bj1bj2γ−h(x)

=
1

2π

X
h,j1,j2

e−iω(h+j1−j2)bj1bj2γh(x)

=
1

2π

X
j1

e−iωj1bj1
X
j2

e+iωj2bj2
X
h

e−iωhγh(x)

= b(e−iω)b(e+iω)Sx(ω)

=
¯̄
b(e−iω)

¯̄2
Sx(ω)


