
Chapter 2

Equilibrium Models

2.1 Introduction

The purpose of this chapter is twofold. First, we will introduce the reader to
some popular dynamic equilibrium models used in the literature. The second
goal of this chapter is to improve the reader’s skill in working with equilibrium
models. In particular, we construct systems of n equations in n unknowns to
characterize the solution of the model, determine the set of state variables, cal-
culate steady states, analyze properties of the model without explicitly solving
it, and compare the behavior of economic variables in the competitive equilib-
rium to the behavior of these variables if they are chosen by a social planner.
In Section 2.2, we consider an extension of the model developed in Chapter
1 in which the government issues fiat money and money, besides a source of
wealth also fascilitates transactions. In Section 2.3 we consider non-monetary
and monetary overlapping generations models. In these models, agents only live
for a finite time period and at each point in time cohorts of different ages are
alive.
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2.2 Monetary models with infinitely-lived agents

2.2.1 Specification of the model

Households in this economy solve the following optimization problem:

max
ct+j , ht+j , kt+j+1,

vt+j ,Mt+j+1, Bt+j+1


∞

j=0

E

 ∞∑
j=0

βju(ct+j , 1− ht+j − vt+j)| It


s.t. ct+j + kt+1+j +

Mt+1+j

pt+j
+ qt+j

Bt+1+j

pt+j
+ τt+j =

θt+jf(kt+j , ht+j) + (1− δ)kt+j +
Mt+j

pt+j
+

Bt+j
pt+j

vt+j = v
(
ct+j ,

Mt+j

pt+j

)
kt,Mt, and Bt predetermined

(2.1)

Here ct stands for consumption, ht for labor supply, vt for shopping time, kt
for beginning-of-period t capital, Mt for beginning-of-period t nominal money
balances, pt for the price level, τt for lump-sum taxes, θt for the productivity
shock, and Bt for the number of bonds bought at period t− 1. Also qt−1 is the
price of a bond bought in period t− 1 that delivers one unit of money in period
t. Leisure in this economy is equal to 1 − ht − vt. The amount of time spent
shopping is a function of ct and real money balances mt = Mt/pt with

∂v(c,m)

∂c
> 0 and

∂v(c,m)

∂m
< 0. (2.2)

Thus, the higher the amount of consumption the higher the amount of time
spent shopping and the higher the amount of real money balances the smaller
the amount of time spent shopping. At the end of this section, we will give a
more detailed motivation for the shopping time function.

The budget constraint for the government is given by

Ms
t+1 −Ms

t

pt
+
qtB

s
t+1 −Bst
pt

+ τt = gt, (2.3)

where gt is the per capita amount of government expenditures, Ms
t is the (per

capita) money supply, and Bst is the (per capita) bond supply. According to
this budget constraint, the government can finance government expenditures
through seigniorage, by issuing bonds, and by levying taxes. The constraint
implies that if the government chooses three of their four instruments, then the
fourth one is pinned down. We will assume that gt, M

s
t , and Bst are exogenous

processes and that τt is solved from 2.3. In particular, suppose that

ln(gt) = γ0 + γ1 ln(gt−1) + εgt , (2.4)

ln(Bst+1) = φ0 + φ1 ln(Bst ) + εBt , and (2.5)

ln(Ms
t+1/M

s
t ) = µ0 + u1 ln(Ms

t /M
s
t−1) + εMt , (2.6)

where εgt , ε
B
t , and εMt are independent white-noise error terms.
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Deriving the shopping-time function

The idea is that to acquire a consumption level equal to ct requires producing
acquisition services at ≥ ct. These acquisition services can be produced using
real money balances and shopping time as inputs, just as capital and labor are
used as inputs in the production function. Real money balances reduce the
amount of resources needed to acquire a certain amount of consumption, for
example because a higher level of real money balances means that less time
has to be spent searching for commodities that can be bought on credit and
bargaining about the interest payments. The assumption that one needs a
costly resource like time to acquire consumption seems like a weak assumption
even though it implicitly argues that those in this world who enjoy shopping are
a minority. Don’t forget, however, that this is supposed to be a macro model.
So part of the costs of “shopping” are the costs of the banking sector to check
for credit ratings, etc..

Suppose that the function that specifies how the inputs money and shopping
time can be used to produce acquisition services is equal to

at = ξmκ
t v

1−κ
t . (2.7)

If κ is equal to one then shopping time is not productive and only real money
balances are needed to acquire consumption. Moreover if ξ is equal to one as
well, then we would have the standard cash-in-advance specification. That is,

ct ≤ at = mt. (2.8)

For 0 < κ < 1 we have
ct = at = ξmκ

t v
1−κ
t . (2.9)

Note that we have imposed the equality that ct = at in 2.9 because for regular
utility functions agents would never use more shopping time than is absolutely
needed.1 Rewriting Equation 2.9 gives

vt = ξc
1/(1−κ)
t m

−κ/(1−κ)
t , (2.10)

where ξ = (1/ξ)1/(1−κ). If we substitute the shopping-time function into the
current-period utility function then we get a utility function that depends on
consumption, labor supply, and real money balances. The shopping-time model
is, thus, a special case of money-in-the-utility (MIU) models in which just owning
real money balances provides utility.2

1We did not impose this restriction in Equation 2.8 because money balances Mt are chosen
in period t− 1. The agent would not like to use any more money than is needed since money
doesn’t earn any interest and bonds do. However, he cannot predict perfectly how much
money is going to be needed. In particular, ct and pt are not known in period t− 1 and it is,
therefore, not necessarily true that 2.8 holds with equality.

2Make sure you don’t confuse this reason for why real money balances have utility with the
reason that (real) money balances provide utility indirectly because they represent a source
of wealth.
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2.2.2 First-order conditions and definition of equilibrium

The first-order conditions for the agent’s problem are the following:

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.11a)

λt = βE

[
λt+1

(
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

)
| It
]
, (2.11b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
, (2.11c)

qtλt
pt

= βEt

[
λt+1

pt+1

]
, (2.11d)

λt
pt

= βE

λt+1 − ∂u(ct+1,lt+1)
∂lt+1

∂v(ct+1,mt+1)
∂mt+1

pt+1
| It

 , (2.11e)

ct + kt+1 +
Mt+1

pt
+ qt

Bt+1

pt
+ τt = (2.11f)

θtf(kt, ht) + (1− δ)kt +
Mt

pt
+
Bt
pt
,

lim
J→∞

E
[
βJ−1λJkJ+1|It

]
= 0, (2.11g)

lim
J→∞

E

[
βJ−1qJ

λJ
pJ
BJ+1|It

]
, and (2.11h)

lim
J→∞

E

[
βJ−1

λJ
pJ
MJ+1|It

]
, (2.11i)

where lt = 1 − ht − v(ct,mt). It would be a good exercise to derive these
first-order conditions using the Lagrangian for the sequence problem.

Suppose that each agent in the economy has the same starting values, thus,
Mt = Ms

t , Bt = Bst , and kt = Kt, where Kt is the per capita capital stock. Since
all agents are the same, the agents’ demand functions are the same and the
economy is in equilibrium when the quantities demanded by our representative
agent are equal to the per capita supplied quantities. Thus,

Mt+1 = Ms
t+1 (2.12a)

Bt+1 = Bst+1 (2.12b)

A competitive equilibrium consist of solutions for ct, ht, kt+1, Mt+1, Bt+1,
λt, pt, and qt that satisfy the equations in 2.11 and 2.12. SinceMt+1 = Ms

t+1 and
Bt+1 = Bst+1 we can also define a competitive equilibrium as a set of solutions
for ct, ht, kt+1, λt, pt, and qt that satisfy the equations in 2.11. In that case Mt+1

and Bt+1 are exogenous variables. Working with a smaller set of endogenous
variables is often convenient, if you try to numerically solve the model. But you
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have to realize that the individual doesn’t act as if he has to set Mt+1 equal to
Ms
t+1. He thinks he is free to choose any Mt+1. At equilibrium prices, however,

it is optimal to choose a value for Mt+1 that is equal to Ms
t+1.

State variables

A solution to this model would consist of a consumption function c(st), a capital
function k(st), a labor supply function h(st), a money demand function M (st),
a bond demand function B (st), a price function p (sat ), a bond price function
q (sat ), and a tax function τ (sat ), where st is a vector of state variables relevant
for the individual and sat is a vector of aggregate state variables. Let’s think
about what the state variables in this problem are. Clearly relevant for the
agent’s choices are the capital stock, kt, his money holdings, Mt, his bond
holdings, Bt, and the productivity shock. In addition, he cares about current
and future values of the tax level, the bond price, and the price level. Current
values of these three variables are known but are bad candidates to serve as state
variables since they are not predetermined. Moreover, since we typically don’t
know whether these variables are Markov processes or if we do know of what
order, we wouldn’t know how many lags to include. But we can come up with
a list of variables that will determine current and future values of the tax level,
the bond price, and the price level. Those are Ms

t+1/M
s
t , Ms

t , Bst+1, Bst ,Kt,
and gt. Note that Ms

t , Bst , and Kt are included because they represent wealth
components of the average agent in this economy. The growth rate of money,
Ms
t+1/M

s
t , is included because it determines together with Ms

t the money supply
in period t and because it is a sufficient predictor for future money growth rates.
For similar reasons Bst+1 and gt are included because they, among other things,
affect tax rates. This gives st = [Mt, Bt, kt, M

s
t+1/M

s
t , M

s
t , B

s
t+1, B

s
t , Kt,

gt] and sat = [Ms
t+1/M

s
t , M

s
t , B

s
t+1, B

s
t , Kt, gt]. Since all agents are identical

and have been identical in the past, it will always be the case that kt = Kt,
Mt = Ms

t , and Bt = Bst . When you use this condition then st would be equal
to [Mt, Bt, kt, Mt+1/Mt, Bt+1, gt] and sat would be equal to [Mt+1/Mt, Mt,
Bt+1, Bt, Kt, gt]. But in principle, our models allows us to ask and answer the
question how our agent (who is only a really small part of this economy) would
behave if his own capital stock is say 5% higher than the average capital stock.
When we reduce the set of state variables we cannot do this anymore 3

2.2.3 Analyzing the competitive equilibrium without ex-
plicitly solving it

Even without explicitly solving for policy functions and equilibrium prices one
can sometimes determine important properties of the equilibrium solutions. In
this section we discuss two such properties. The first one is Ricardian equiva-
lence and the second is money neutrality. Later in this chapter we will provide
two more examples. In Section 2.2.5 we will analyze optimality properties of

3Now that we have defined the state variables it would be a good exercise to derive the
first-order conditions in 2.11 again using the Bellman equation.
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the competitive equilibrium and in Section 2.2.6 we will determine whether a
cash-in-advance constraint is binding.

Ricardian Equivalence

A model is said to satisfy Ricardian Equivalence if a change in the time-path
of government debt, keeping government spending fixed, does not affect equi-
librium prices or the individual’s choices for consumption, capital, labor supply,
and real money balances. The amount of taxes is of course affected by a change
in Bt+1 and an increase in Bt+1 would decrease government savings. Under
Richardian Equivalence, however, this decrease is exactly offset by an increase
in private savings and aggregate savings remains the same. If a model satisfies
Ricardian Equivalence, then it, thus, doesn’t matter whether the government
finances government expenditures with taxes or with government debt.

It is easy to see why the model developed in this section satisfies Ricardian
Equivalence. Note that if the laws of motion for money supply, Ms

t+1(= Mt+1),
and government expenditures, gt, are taken as given, then the following system
can be used to solve for c(st), k(st), h(st), q (sat ), p (sat ), and λt.

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.13a)

λt = βE

[
λt+1

(
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

)
|It
]
, (2.13b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
(2.13c)

qtλt
pt

= βEt

[
λt+1

pt+1

]
, (2.13d)

λt
pt

= βE

[(
λt+1 −

∂u(ct+1, lt+1)

∂lt+1

∂v(ct+1,mt+1)

∂mt+1

)
1

pt+1
|It
]
, and (2.13e)

ct + kt+1 + gt = θtf(kt, ht) + (1− δ)kt (2.13f)

Neither government debt not taxes appear in this system of equations, so the
solution is not affected by a change in these variables. The reason for this result
is that economic agents realize that a reduction in current taxes caused by an
increase in debt financing leads to an increase in future taxes since at some
point the debt has to be repaid. The intertemporal budget set for the agent
is, thus, not affected by a reduction in current taxes - as long as government
expenditures remain the same. Consequently, the optimal choice is not affected
either.

Ricardian equivalence implies that the time path of Bst+1 does not affect the
agents choices. You might be tempted to say that the supply of government debt
is, thus, not a state variable. It is typically better, however, not to think too
much about these kind of properties in constructing the set of state variables.
Note that the supply of government debt still affect taxes. More importantly,
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it is worse to miss a state variable then to have a state variable in your model
that in your particular model doesn’t have an effect.

Neutrality

Again consider the solutions for c(st), k(st), h(st), λ(st), p (sat ), and q (sat ) that
solve the system of equations 2.13 at the exogenously specified values of the
money supply. Now take as given the state variables in period τ and suppose
that you multiply the money supply in each period by a factor φ > 0 beginning
with the beginning-of-period money supply in period τ . Thus the new money
supply M̃τ+j = φMτ+j ∀j ≥ 0.4 Then even without knowing what the particu-
lar solutions for this economy look like you can figure out how this change in the
money supply will affect the variables in this economy. In fact, after the change
in money supply the price level will be equal to the old price level multiplied
with a factor φ and other variables remain the same. That is, p̃ (s̃at ) = φp(sat ),

c̃(st) = c(st), k̃(st) = k(st), h̃(st) = h(st), and q̃ (s̃at ) = q(sat ). It is not hard to
see why this is the case. The new solution has to satisfy

λ̃t =
∂u(c̃t, l̃t)

∂c̃t
− ∂u(c̃t, l̃t)

∂l̃t

∂v(c̃t, m̃t)

∂c̃t
, (2.14a)

λ̃t = βE

[
λ̃t+1

(
θ̃t+1

∂f(k̃t+1, h̃t+1)

∂k̃t+1

+ 1− δ

)
|It

]
, (2.14b)

∂u(c̃t, l̃t)

∂l̃t
= λ̃tθt

∂f(k̃t, h̃t)

∂h̃t
(2.14c)

q̃tλ̃t
φpt

= βE

[
λ̃t+1

φpt+1
|It

]
, (2.14d)

λ̃t
φpt

= βE

[(
λ̃t+1 −

∂u(c̃t+1, l̃t+1)

∂l̃t+1

∂v(c̃t+1, m̃t+1)

∂m̃t+1

)
1

φpt+1
|It

]
, and (2.14e)

c̃t + k̃t+1 + gt = θ̃tf(k̃t, h̃t) + (1− δ)k̃t (2.14f)

where we have already substituted in our guess for p̃t. It is easy to see that
the factor φ cancels out in each equation and you end up with the same set of
equations as in 2.14 and, thus, with the same solutions.

2.2.4 Steady-State Solution and Superneutrality

In this section we will make use of the following assumption and lemma.

Condition 1 (functional forms) U(ct, lt) = cνt l
1−ν
t , f(kt, ht) = kαt h

1−α
t , v(ct,mt) =

ξ (ct)
1

1−κ (mt)
−κ
1−κ , 0 < ν < 1, 0 < κ < 1, α > 0,and ξ > 0.

4Note that we use the equilibrium condition that money demand equals money supply.
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Lemma 2 (equal growth rates) If x = y+z and the growth rates of all three
variables are constant, then the growth rates are equal.

Before analyzing the full stochastic version of a dynamic model it is often
useful to first learn about the properties of the non-stochastic version of the
model. The first step would be to replace the stochastic variables with their
unconditional means. Let the unconditional mean of Ms

t+1/M
s
t be equal to µ

and the unconditional mean of gt be equal to g. Moreover, we assume without
any loss of generality that the unconditional mean of θt is equal to one and of
the unconditional mean of Bt+1 is equal to zero. We define a stationary state
as a solution of the model in which all variables are constant and a steady state
as a solution in which all growth rates are constant.

Suppose that µ 6= 0. The question arises whether real variables like consump-
tion could have non-zero growth rates in an economy in which the growth rate
of money is not equal to zero. If the conditions in assumption 2.1 are satisfied,
then it is easy to show that such a solution can not be a steady-state solution. In
particular, we continue by showing that in a steady-state solution all variables
except nominal money balances and prices are constant. The equations for the
steady-state version of the competitive equilibrium in 2.13 are given by

λt = ν

(
ct
lt

)ν−1
+

1− ν
1− κ

(
ct
lt

)ν
ξ(ct/mt)

κ/(1−κ), (2.15a)

1 = β

[
λg

(
α

(
kt
ht

)α−1
+ 1− δ

)]
, (2.15b)

(1− ν)

(
ct
lt

)ν
= λt(1− α)

(
kt
ht

)α
, (2.15c)

qt = β

[
λg
pg

]
, (2.15d)

1 = β

[
λg
pg

+
1

λtpg

κ(1− ν)

1− κ

(
ct
lt

)1−ν

ξ(ct/mt)
1/(1−κ)

]
, and (2.15e)

ct + kt+1 + gt = kαt h
1−α
t + (1− δ)kt, (2.15f)

where xg is equal to xt+1/xt which by definition of a steady state is constant.
Since ht + lt + vt = 1 and the right-hand side doesn’t grow, lemma 2.2 implies
that the variables on the left-hand side should be constant in a steady state too.
Then 2.15b immediately tells us that kt is constant in a steady state as well.
Furthermore, 2.15f implies that ct is constant which in turn implies that mt is
constant (since vt is constant). If mt is constant, then the inflation rate has to
equal the growth rate of the money supply. Finally, if mt and ct are constant,
then λt and qt are constant as well and we can rewrite the system of equations
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in 2.15 as follows.

λ = ν
(c
l

)ν−1
+

1− ν
1− κ

(c
l

)ν
ξ(c/m)κ/(1−κ), (2.16a)

1 = β

[
α

(
k

h

)α−1
+ 1− δ

]
, (2.16b)

(1− ν)
(c
l

)ν
= λ(1− α)

(
k

h

)α
, (2.16c)

q = β

[
1

pg

]
, (2.16d)

1 = β

[
1

pg
+

1

λpg

κ(1− ν)

1− κ

(c
l

)1−ν
ξ(c/m)1/(1−κ)

]
, and (2.16e)

c+ g = kαh1−α − δk, (2.16f)

We will use the system of equations in 2.16 to analyze how variables change
in response to a change in the growth rate of money supply. Recall that if the
amount of real money balances is constant in a steady state, then the growth
rate of money equals the inflation rate.

We say that a model is superneutral if in response to a change in the steady-
state growth rate of money supply (or inflation) real variables except possibly
real money balances and transfers do not change. We exclude real money bal-
ances because in any sensible model, the demand for real money balances de-
pends negatively on the rate of return on money and is, thus, inversely related
to an increase in the growth rate of money supply. Similarly a change in real
money balances typically changes the level of real taxes.

To show that this model is superneutral we have to find a subsystem with
which we can solve for c, k, h, and l that does not contain the money growth
rate. For this model this cannot be done, so this model is not superneutral.
To understand why suppose to the contrary that c, k, h, and l are not affected
by a change in µ. If real money balances change, then equations 2.16a and
2.16c imply that either c, h, or l has to change as well. If the level of real
money balances would remain the same then 2.16e implies that λ changes which
according to 2.16a implies that either c or l has to change.

The intuition for this lack of superneutrality is the following. Since real
money balances are constant in the steady state, we know that an increase in
the growth rate of money supply corresponds to an equal increase in the inflation
rate. This lowers the real return on holding real money balances and makes it
more expensive to hold money. This plays a role in two substitution processes.
Note that the agent can use real money balances and shopping time to produce
acquisition services. Since real money balances have become relatively more
expensive, the economic agent will substitute real money balances for shopping
time. The increase in shopping time puts downward pressure on leisure and
hours worked. The second substitution process deals with the two arguments in
the agent’s utility function, consumption and leisure. To acquire consumption
the agent needs real money balances but to acquire leisure he doesn’t. The
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increase in inflation, thus, increases the price of consumption relative to the
price of leisure. The agent will respond by reducing consumption and increasing
leisure. The latter effect puts downward pressure on labor supply. In this
economy we can, thus, expect an increase in the steady-state growth rate of
money and inflation to reduce economic activity.

2.2.5 Social planner’s problem

In the neoclassical growth model developed in Chapter 1, the allocation of the
competitive equilibrium coincides with the allocation in the social planner’s
problem and the competitive equilibrium allocation is, thus, Pareto optimal. In
contrast, monetary competitive equilibriums are often not Pareto optimal. To
analyze this issue we specify the first-order conditions for the social planner’s
problem and compare those with the ones obtained above for the competitive
equilibrium.5 It is important to distinguish between the social planner and the
government. The social planner is a fictitious agent, while the government is
the body of institutions that actually sets monetary and fiscal policy.

The social planner faces the same technology constraints as the agents in
the economy. In particular, the social planner also has to combine real money
balances and shopping time to acquire consumption services. If there is only
one representative agent in the economy then the objective function of the social
planner coincides with that of the representative agent. The social planner
differs from the actual agents in the model in that the social planner’s budget
constraint is the overall budget constraint. The social planner’s optimization
problem is, thus, given by

max ct+j , ht+j , kt+j+1,
vt+j ,mt+j


∞

j=0

E

 ∞∑
j=0

βju(ct+j , 1− ht+j − vt+j)| It


s.t. ct+j + kt+1+j + gt+j = θt+jf(kt+j , ht+j) + (1− δ)kt+j

vt+j = v
(
ct+j ,

Mt+j

pt+j

)
kt predetermined

(2.17)

Note that government debt is not included as a choice variable for the social
planner. The reason is that in a model that satisfies Ricardian Equivalence the
choice for government debt doesn’t affect the utility of the agent. Also, since the
pt is not yet determined in period t, period t real money balances are included
as a choice variable for the social planner. The first-order conditions for the

5The model analyzed in this chapter does not have markets for capital and labor. One can,
however, easily decentralize the model without changing the central argument of this section.
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social planner’s problem are equal to

λt =
∂u(ct, lt)

∂ct
− ∂u(ct, lt)

∂lt

∂v(ct,mt)

∂ct
, (2.18a)

λt = βE

[
λt+1

(
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

)
|It
]
, (2.18b)

∂u(ct, lt)

∂lt
=
∂u(ct, lt)

∂ct
θt
∂f(kt, ht)

∂ht
, (2.18c)

∂u(ct, lt)

∂lt

∂v(ct,mt)

∂mt
= 0, (2.18d)

ct + kt+1 + gt = θtf(kt, ht) + (1− δ)kt, and (2.18e)

lim
J→∞

E
[
βJ−1λJkJ+1|It

]
= 0. (2.18f)

When we compare the equations in 2.18 with the equations in 2.13 then we see
that all equations are the same except the first-order condition for money. The
social planner’s first-order conditions indicate that the agent should be com-
pletely satiated with real money balances at the optimum since it doesn’t cost
the social planner anything to increase the level of real money balances.6 The
individual typically would not pick such a large number of real money balances
since for every unit of real money balances held he has to pay the opportunity
costs, that is, he foregoes interest payments that he could have earned on bond
purchases. There are circumstances when the competitive equilibrium does co-
incide with the social planner’s problem. A necessary condition would be that
the interest rate is equal to zero in each period (or qt is equal to one). In that
case the opportunity costs of holding money would be equal to zero for the
individual agent as well.

Implications for steady-state inflation

If the interest rate is equal to zero then the steady-state inflation rate π =
pt+1/pt − 1 is equal to β − 1, which equals (approximately) the negative of
the discount rate. This is the famous “Chicago Rule”.7 To understand this
optimality result a little bit better recall that the agent uses real money balances
and shopping time to produce acquisition services. From the individual’s point
of view both real money balances and shopping time are costly inputs. From
the social planner’s point of view, however, real money balances are free and
shopping time is costly. Only if the nominal interest rate is equal to zero are
the (opportunity) costs of holding real money balances for the individual also
equal to zero.

6Note that the level of real money balances that satisfies equation 2.18d is infinite.
7See, for example, Friedman (1969).
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2.2.6 Cash-in-Advance Models

In this section we consider a special case of the shopping-time technology de-
scribed above. In particular, if we assume that ξ = 1 and κ = 1, then shopping
time is not productive in acquiring consumption and for every additional dollar
of consumption you have to hold one additional dollar of your wealth in the
form of money. In addition, we assume that any increase in the money supply
during period t can be used to acquire consumption commodities. That is, we
have the following constraint.

ct ≤
Mt + (Ms

t+1 −Ms
t )

pt

Before we write down the optimization problem of the agent, it might be
useful to give an intuitive description of the sequence of events in each pe-
riod. At the beginning of the period, the agents observe the realizations of θt
and εMt . Using beginning-of-period nominal money holdings and any possible
money transfer received from the government the agent buys consumption. Af-
ter shopping the agent returns to the household with the remainder of his money
balances, Mt + (Ms

t+1 −Ms
t ) − ptct ≥ 0. At this point the agent decides how

much labor to supply and how much to invest in capital, one-period bonds, and
money holdings.

The agent’s optimization problem in the cash-in-advance economy is given
by

max
{Ct+j ,ht+j ,kt+j+1,Mt+j+1,Bt+j+1}∞j=0

E

 ∞∑
j=0

βju(ct+j , 1− ht)| It


s.t. kt+1+j +

Mt+1+j

pt+j
+ qt+j

Bt+1+j

pt+j
+ τt+j = θt+jf(kt+j , ht+j)

+(1− δ)kt+j +
(
Mt+j+(Ms

t+j+1−M
s
t+j)

pt+j
− ct+j

)
+

Bt+j
pt+j

ct+j ≤
Mt+j+(Ms

t+j+1−M
s
t+j)

pt+j

kt,Mt, and Bt predetermined

(2.19)

The first-order conditions for this problem are given by

∂u(ct, lt)

∂ct
= λt + ηt, (2.20a)

λt = βE

[
λt+1

(
θt+1

∂f(kt+1, ht+1)

∂kt+1
+ 1− δ

)
|It
]
, (2.20b)

∂u(ct, lt)

∂lt
= λtθt

∂f(kt, ht)

∂ht
(2.20c)

qtλt
pt

= βE

[
λt+1

pt+1
|It
]
, (2.20d)

λt
pt

= βE

[
λt+1 + ηt+1

pt+1
|It
]
, (2.20e)
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kt+1 +
Mt+1

pt
+ qt

Bt+1

pt
+ τt = θtf(kt, ht)+ (2.20f)

(1− δ)kt +

(
Mt + (Ms

t+1 −Ms
t )

pt
− ct

)
+
Bt
pt
,

ct ≤
Mt + (Ms

t+1 −Ms
t )

pt
, (2.20g)

ηt

(
Mt − (Ms

t+1 −Ms
t )

pt
− ct

)
= 0 (2.20h)

ηt ≥ 0 (2.20i)

lim
J→∞

βJ−1E [λJkJ+1|It] = 0, (2.20j)

lim
J→∞

βJ−1E

[
qJ
λJ
pJ
BJ+1|It

]
= 0 and (2.20k)

lim
J→∞

βJ−1E

[
λJ
pJ
MJ+1|It

]
= 0, (2.20l)

Note that the Lagrange multiplier corresponding to the cash-in-advance constraint,ηt,
is equal to zero if consumption is strictly less than the amount of real money
balances.8 As in the shopping-time model, the marginal utility of consumption
exceeds the marginal utility of wealth. Since the increase of money is now given
directly to the shopper, the amount of taxes is given by

τt = gt −
qtB

s
t+1 −Bst
pt

. (2.21)

A competitive equilibrium consist of solutions for ct, ht, kt+1, Mt+1, Bt+1, τt,
λt, ηt, pt, and qt that satisfy the equations in 2.20 and 2.21 and the following
two equilibrium conditions.

Mt+1 = Ms
t+1 and (2.22)

Bt+1 = Bst+1. (2.23)

If we combine equations 2.20a, 2.20d, and 2.20e then we get

qtEt
1

pt+1

∂u(ct+1, lt+1)

∂ct+1
= Et

[
β

pt+2

∂u(ct+2, lt+2)

∂ct+2

]
.

This first-order equation for bonds is very similar to the first-order equation for
bonds in a model without a cash-in-advance constraint. The difference is that
there is a shift in timing. The reason is that if there was no cash-in-advance

8Strictly speaking we would have to also add the constraint that λt ≥ 0 but this non-
negativity constraint is never binding for regular functional form specifications.
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constraint buying a dollar worth of bonds means reducing consumption with
1/pt units, the value of which is equal to (∂U(ct, lt)/∂ct)/pt. In a cash-in-
advance economy buying one dollar worth of bonds means giving up one dollar
of money holdings in this period and this means giving up consumption in the
next period.

Note that in period t the agent chooses Mt+1, which he needs to buy con-
sumption in period t + 1. Ideally he wouldn’t want to hold anymore money
balances than is absolutely necessary since on money balances he doesn’t earn
any interest and on bonds he does. However, the economic agent doesn’t know
yet the value of pt+1 and the optimal choice for ct+1 when he has to choose Mt+1

So it seems logical that the cash-in-advance constraint is not always binding.
For example, if productivity is unexpectedly low in period t then you would
expect that the agent would like to consume less than originally planned and
have less nominal money balances than needed. Similarly, when the amount of
money supply is exceptionally high then you would expect the agent to have
excess money balances. Although this intuition would definitely be correct if
prices are exogenous, it turns out that this intuition ignores the endogenous
response of equilibrium price levels to these kind of shocks.

To understand the last statement better we will consider a version of the
cash-in-advance economy developed in this section in which the constraint turns
out to be always binding in equilibrium. In particular, suppose that the following
assumption holds.

• U (ct, lt) = ln (ct) + δ ln(lt),

• Ms
t /M

s
t+1 < 1/β ∀t, and

• S = supmt/ct <∞.

The condition that Ms
t /M

s
t+1 < 1/β is very weak and even allows for a

negative growth rate of money supply as long as it isn’t too negative. The con-
dition that supmt/ct < ∞ rules out irregular cases. The following proposition
shows that under this condition the cash-in-advance constraint is binding in
every period.

Proposition 3 If Condition 4 holds then ηt > 0 ∀t.
Proof. Define St as mt/ct. Suppose to the contrary that there are states of

nature such that the constraint is not binding. Consider a state of nature such
that Sτ = S − ετ , with ετ ≥ 0 and ητ = 0. Since S equals supSt we can choose
ετ to be arbitrarily small. Intuitively, we focus on the state where the constraint
is least binding, i.e. mt/ct is the highest. The sup is used since the max may
not exist. Note, it may be possible that Sτ = 1. Since ητ = 0 we have

λτ
pτ

=
1

pτ cτ
.

Combining this equation with 2.20a and 2.20e gives

λτ
pτ

= βE

[
λτ+1 + ητ+1

pτ+1
|Iτ
]

= βE

[
1

pτ+1cτ+1
|Iτ
]

(2.24)
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or

1 = βE

[
pτ cτ

pτ+1cτ+1
|Iτ
]
. (2.25)

Thus

1 = βE

[
Mτ/Sτ

Mτ+1/Sτ+1
|Iτ
]

= βE

[
Mτ

Mτ+1

Sτ+1

S − ετ
|Iτ
]
≤ βE

[
Mτ

Mτ+1
|Iτ
]
,

where the inequality follows from the definition of S. But the assumption made
about money growth contradicts that 1 ≤ βE [Mt/Mt+1|It] = βMt/Mt+1.

2.3 Overlapping-Generations Models

In the type of models developed in the last section, agents hold money because
it is either assumed that real money balances are an essential input to obtain
consumption or it is assumed that holding wealth in the form of money gives
utility that other forms of wealth do not provide. In such models money always
has value. In the modern age we use paper money, which except for those that
use cocaine, has no intrinsic value; Money only has value because other agents
are willing to accept money in exchange for commodities that do have intrinsic
value. If you do not expect other agents to accept money, the rational thing
for you to do is not to accept money either. Such an equilibrium does not exist
in MIU models and this is a drawback of these type of models. In this section,
we consider overlapping-generations or OLG models in which equilibria where
money has positive value may occur but the case where money is not valued is
always an equilibrium too.

An important concept in studying overlapping-generations model is the idea
of overaccumulation of capital. In Section 2.3.1, we will show this can never
happen in the model of Chapter 1 with infinitely-lived agents. In Section 2.3.2,
we lay out the basic overlapping-generations model, and in the last section we
consider monetary equilibria in overlapping-generations models.

2.3.1 Overaccumulation of Capital in Infinite-Horizon Mod-
els

Consider again the non-stochastic version of the model developed in Chapter 1.

max{ct,kt+1}∞t=1

∑∞
t=1 β

t−1 ln(ct)

s.t. ct + kt+1 ≤ kαt + (1− δ)kt
kt+1 ≥ 0

k1 = k

(2.26)

We have adopted a logarithmic current-period utility function but the results in
this section are true for more general utility functions as well. The first-order
condition for this problem is given by

(kαt + (1− δ)kt − kt+1)
−1

=

= β
[(
kαt+1 + (1− δ)kt+1 − kt+2

)−1 {
αkα−1t+1 + 1− δ

}] (2.27)
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and the expression for the steady-state value for capital, kss, is the following:

kss =

(
1− β(1− δ)

αβ

) 1
α−1

(2.28)

It can be shown that the time path of capital that is the solution to 2.26
converges to kss. Now consider the following static maximization problem:

max{c,k} ln(c)
s.t. c+ k ≤ kα + (1− δ)k (2.29)

Note that this problem chooses the constant or steady-state values of capital and
consumption with which the agent would obtain the highest possible current-
period utility level, which of course correspond to choosing the highest possible
(constant) consumption value. The first-order condition for this problem is

αkα−1 − δ = 0

and the capital stock that solves this problem is called the golden-rule capital
stock and is equal to

kgr =

(
δ

α

) 1
α−1

. (2.30)

Whenever the capital stock is bigger than the golden-rule capital stock then
the marginal productivity of capital is less than the depreciation rate, that is,
the net return on capital is negative. It is important to understand that the
maximization problem in 2.29 is only introduced to introduce the concept of
overaccumulation of capital and to understand the actual optimization problem
in 2.26 better. We are not saying that 2.29 actually is relevant for any agent’s
behavior.

For any positive initial capital stock, capital will converge monotonically
towards kss. Thus, if k1 > kss then k1 > k2 > k3 > · · · > kss and if k1 < kss

then k1 < k2 < k3 < · · · < kss. Now suppose that k1 6= kss and consider
the time path for capital such that kt = k1 for t = 2, 3, · · · .9 One way to
prove that this investment plan is not optimal is to show that it doesn’t satisfy
2.27. But when k1 > kgr there is also a very intuitive reason why you would
never want to keep capital constant at the initial level. The reason is that by
setting kt = kgr < k1 for k = 2, 3, · · · the agent would have both a higher
consumption level in period 1, since his investment level is smaller, and a higher
consumption level thereafter since the highest possible steady-state consumption
level is associated with kgr.

It is probably worthwhile to think through why setting kt = k1 for t =
2, 3, · · · is also not optimal when k1 = kgr. You might think that this capital
path is optimal since it has the highest possible level of steady-state consumption
and you don’t have to make any additional net investment to get to this high
level of capital. If the agent chooses a capital path that converges towards kss

9This will be feasible as long as k1 < δ1/(α−1), which exceeds kgr as long as α < 1.
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then his consumption level will converge towards a level that is lower than the
consumption level associated with the golden-state capital stock. By lowering
the capital stock below kss, however, the agent can at least initially enjoy a
consumption level that exceeds the golden-rule consumption level which is more
important than a lower consumption level in the limit because of discounting.10

2.3.2 Non-Monetary Overlapping-Generations Models

In this section, we will develop a very simple overlapping-generations model
in which each agent lives for exactly two periods. That is, in every period t
a generation of “young” agents is born. In period t + 1 the generation born
in period t becomes “old” and a new generation of young agents is born. We
will start by formulating the basic model and discuss Pareto optimality and
overaccumulation of capital in non-monetary overlapping-generations models.
This discussion will be useful in the next section where we discuss monetary
overlapping-generations models.

The basic OLG model

We will start with an OLG model without population growth11 in which each
young agent is endowed with one unit of the consumption commodity. The
optimization problem of a young agent would then be the following:

max
cyt ,c

o
t+1,st+1

U(cyt , c
o
t+1)

s.t. cyt + st+1 = 1,
cot+1 = (1 + rt+1)st+1,

(2.31)

where cyt is the consumption of the young in period t, cot+1 is the consumption
of the old in period t+1, st+1. The amount saved by the young in period t, and
rt+1 is the rate of return on savings made in period t. Let v(cyt , c

o
t+1) denote

the marginal rate of substitution. That is

v(cyt , c
o
t+1) =

∂U(cyt , c
o
t+1)/∂cyt

∂U(cyt , c
o
t+1)/∂cot+1

.

As stated in the following assumption, we assume that the utility function has
standard properties.

• ∂U(cyt , c
o
t+1)/∂cyt ) > 0, ∂U(cyt , c

o
t+1)/∂cot+1 > 0,

• Both consumption commodities are normal goods,

• v(cyt , c
o
t+1) is continuous,

10Note that if β = 1 the golden-rule capital stock coincides with the steady-state capital
stock of the infinite-horizon optimization problem.

11Because there is no population growth, the number of young agents is equal to the number
of old agents.
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• lim
cyt→0

v(cyt , c
o
t+1) =∞, and

• lim
cot+1→0

v(cyt , c
o
t+1) = 0.

The first-order condition for this problem is given by

∂U(cyt , c
o
t+1)

cyt
=
∂U(cyt , c

o
t+1)

cot+1

(1 + rt+1). (2.32)

First, consider the case where there is no storage technology. This implies
that there is no possibility for the young to save for old age at all. It is important
to understand that the presence of a bond market wouldn’t help. All young
agents want to buy bonds so the young cannot buy from other young. For sure,
some sneaky old guys would be willing to sell bonds to the young, but the young
wouldn’t be willing to buy from the old because the old won’t be around to pay
back when the bonds mature. In equilibrium agents, thus, cannot save and the
equilibrium allocation for consumption is one unit when young and zero when
old. Such a competitive equilibrium in which no trade occurs is called autarky.

Optimality of the competitive equilibrium

The autarky equilibrium is clearly not a Pareto optimum for regular utility
functions.12 To see why note that the young clearly would be willing to give up
ε units of consumption when young for ε units of consumption when old when
ε is small.13 It doesn’t happen in a competitive equilibrium, however, because
there is no storage and no bond market that can implement this trade. But this
transfer is feasible for this economy. In particular, it simply requires taking ε
units of the young each period and giving them to the old. The current young
then give up ε this period and will receive ε when old from the next generation.
Moreover, implementation of such a transfer would generate an additional bonus
for this economy since in the period of the initial transfer there are an extra ε
units available. They either could be given to the old, who didn’t give up any
commodities when young, or to the young, who already receive ε units when
old, or they could divide the ε units.

A classic article on overlapping generations is Shell (1971). In this article the
author makes clear that the competitive equilibrium in this type of overlapping-
generations model is not Pareto optimal because of a double infinity. That is,
an infinite number of dated commodities and an infinite number of (finite-lived)
individuals. Note that if the economy would end in period T then the transfer
scheme would not be Pareto improving since the young born in period T would
be made worse off.

12Note that the marginal utility of consumption when old would be infinite in autarky for
regular utility functions.

13For regular utility functions the argument would go through as long as ε isn’t too large.
The value of ε clearly doesn’t have to be close to zero.
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Now suppose that there is a storage technology available. In particular,
suppose that each unit stored when young in period t gives 1 + r units of
consumption when old with 1 + r > 0. There will still be no trade between
agents in the competitive equilibrium. But by putting commodities in storage
when young, the consumption when old will be positive. Note that agents in
this economy would want to save even when r < 0. Whenever r < 0, however,
the competitive equilibrium is not Pareto optimal. Suppose that the young save
ξ units when young when the rate of return on savings is negative. Clearly
everybody would be better off if a transfer scheme would be implemented where
the young give ξ units to the old each period. Under this transfer scheme the
young will receive ξ units when old, which is larger than (1 + r)ξ units, the
amount they earn by using the private storage technology.

Overaccumulation of capital

The competitive equilibrium described above with r < 0 is similar to the over-
accumulation of capital case describe in Section 2.3.1. In both cases the net
return on capital is less than zero. The big difference, however, is that in an
overlapping-generations model overaccumulation of capital might actually occur
in equilibrium, while in the model of Chapter 1 with infinitely-lived agents it
never does. The possibility of overaccumulation of capital in the OLG model
described above is not due to the fact that the rate of return is fixed. You might
think that in a model with a variable marginal product of capital, agents that
are faced with a negative rate of return on capital would lower the capital stock
and increase the marginal rate of return on savings until it becomes positive.
We will now show that this is not necessarily the case. Suppose the optimization
of the young is given by

max
cyt ,c

o
t+1,kt+1

U(cyt , c
o
t+1)

s.t. cyt + kt+1 = 1
cot+1 = kαt+1 + (1− δ)kt+1

(2.33)

where kt+1 is the capital investment of the young in period t. The first-order
condition for this problem is given by

∂U(cyt , c
o
t+1)

∂cyt
=
∂U(cyt , c

o
t+1)

∂cot+1

(
αkα−1t+1 + 1− δ

)
. (2.34)

Now let’s compare the stationary-state version of this equation

∂U(cy, co)

∂cy
=
∂U(cy, co)

∂co
(
αkα−1 + 1− δ

)
(2.35)

with the stationary-state version of the first-order equation of the model in
Section 2.3.1

∂U(c)

∂c
=
(
αkα−1 + 1− δ

)
β
∂U(c)

∂c
or (2.36)
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1 =
(
αkα−1 + 1− δ

)
β. (2.37)

In the model with infinitely-lived agents, the value of ∂U(ct)/∂ct is equal
to ∂U(ct+1)/∂ct+1 in a stationary state. This ensures that the stationary-state
capital stock is less than the golden-rule capital stock for any utility function. In
an overlapping-generations model it is not true in general that ∂U(cyt , c

o
t+1)/∂cyt

equals ∂U(cyt , c
o
t+1)/∂cot+1. This is even true when the utility function would be

additively separable, that is when U(cyt , c
o
t+1) = u(cyt ) + βu(cot+1), since cyt does

not have to be equal to cot+1.14

Population growth

Above, we mentioned that investing in the storage technology is like overaccu-
mulation when the net return, r, is less than zero. If population growth, n, is
not equal to zero, then we have to tighten this statement. In the presence of
population growth using the storage technology is a silly thing to do whenever
r < n and we say that an economy with positive investment levels when r < n
is characterized by overaccumulation of capital. More formally, any competitive
equilibrium in which agents save at a rate r < n is not Pareto optimal. The
reason is that by using transfers from the young to the old instead of the young
saving for their old age themselves, one can make at least one generation better
off while making no other generation worse off. Note that the transfer scheme
is more attractive when n > 0, which means that overaccumulation of capital is
more likely to happen with positive population growth.

2.3.3 Monetary Overlapping-Generations Models15

In this section we will introduce fiat-money into the model. In contrast to
the money-in-the-utility and cash-in-advance models considered in Section 2.2,
monetary OLG models do not rely on the assumption that money has intrinsic
value or is a necessary input to acquire consumption. Agents are only will-
ing to accept money for commodities, because they expect other agents in
turn to accept money for commodities. Unlike the models in 2.2, therefore,
overlapping-generations models with fiat money typically have an equilibrium
in which money has no value. That is, if agents expect other agents not to
accept money, they will not accept it either. This immediately implies that if
money is know not to have value at any future date T , it will have no value at
any date before T either. We will start considering the economy without storage
and then continue by analyzing the case with storage.

Again, we will consider population growth. The population grows at rate n
and without loss of generality, we assume that N0 = 1. Thus,

Nt = (1 + n)t.

14See exercise 2.2.
15Several of the results in this section are from Wallis (1980).
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An OLG model with money and without storage

Let Md
t be the demand for end-of-period nominal units of money. As in 2.31

we assume that the young obtain an endowment of one unit. The fraction of
the unit that the young don’t consume, 1 − cyt , they can sell at a price pt in
exchange for money. End-of-period t nominal money balances, therefore, are
equal to pt(1− cyt ). In the next period, t+ 1, the young will be the old and they
can use these money balances together with a monetary lump-sum transfer from
the government, Tt+1, to buy consumption cot+1. The optimization problem of
the young born in period t is thus given by

max
cyt ,c

o
t+1,M

d
t

u(cyt , c
o
t+1)

s.t. Md
t = pt(1− cyt )

pt+1c
o
t+1 = Md

t + Tt+1

(2.38)

The first-order conditions for this problem consist of the two budget constraints
and the following Euler equation:

∂u(cyt , c
o
t+1)

∂cyt
=
∂u(cyt , c

o
t+1)

∂cot+1

pt
pt+1

(2.39)

In period t there are Nt−1 old agents and the transfer they get is equal to Tt.
This is financed out of the increase in the aggregate money supply, Ms

t −Ms
t−1.16

The budget constraint of the government specifies that the increase in nominal
money balances is equal to the monetary transfer. That is,

Ms
t −Ms

t−1 = (1 + n)t−1Tt. (2.40)

The equilibrium condition that aggregate money supply is equal to aggregate
money demand can then be written as

Ms
t = (1 + n)tMd

t . (2.41)

Note that this equilibrium on the money market implies equilibrium on the
commodities market. That is

(1 + n)tcyt + (1 + n)t−1cot = (1 + n)t × 1 or (2.42)

(1 + n)cyt + cot = (1 + n)× 1 (2.43)

This is, of course, a version of Walras Law. That is, if the young agents demand
all the units of nominal money in the possession of the old agents, then the
amount of commodities saved by the young got to be equal to the consumption
of the old.

If we assume that money supply grows at a constant rate µ and population
grows at rate n then the equilibrium condition can be written as

16Note that Ms
t is aggregate money supply and Md

t is individual money demand. Both are
end-of-period t quantities.
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(1 + µ)tMs
0 = (1 + n)tMd

t . (2.44)

Before we analyze a monetary equilibrium, that is, an equilibrium in which
money has value we want to repeat the point made in the introduction that
this model does have an equilibrium in which money has no value, that is, an
equilibrium in which the price level is infinite. In that case, the young would
consume their endowment and the old would consume nothing.

Next we will analyze a steady-state solution of the model, that is, we as-
sume that pt/pt+1=pt+1/pt+2.17 From 2.38 and 2.40 it follows that real money
demand, Lt = Mt/pt, is a function of just the inflation rate. In a steady state,
this means that Lt=L(pt/pt+1)=L(pt+1/pt+2) = Lt+1. Combining this with the
equilibrium condition and the law of motion for money supply gives

1 =
Lt
Lt+1

=
Md
t /pt

Md
t+1/pt+1

=

(1+µ)tMs
0

(1+n)t

(1+µ)t+1Ms
0

(1+n)t+1

pt+1

pt
=

(1 + n)

(1 + µ)

pt+1

pt
(2.45)

This implies that in a steady state

pt
pt+1

=
1 + n

1 + µ
. (2.46)

In Figure 2.1, we have graphically represented a steady-state monetary equi-
librium for the case when u > 0.18 The graph plots the agent’s budget con-
straint that represents the possible choices of the consumption when young, cyt ,
and the consumption when old of the same generation, cot+1, which has a slope
of −pt/pt+1 and the societies budget constraint that represents the possible
choices of the consumption of the young, cyt , and the consumption of the old in
the same period, cot , which has a slope of −(1+n). We can plot both in the same
graph, since in the steady state consumption levels are constant. Optimizing
behavior implies that the agent chooses an element on his intertemporal budget
constraint that is tangent to an indifference curve. At the equilibrium price level
this point is feasible, that is, is an element of society’s budget constraint. Note
that a change in the price level adjusts the real value of the transfer that the
old receive. Suppose that the agent’s optimal demand for consumption when
young and when old is above society’s budget constraint. In that case the price
level is too low. An increase in the price level will reduce the value of Tt+1/pt.
This will cause the budget constraint to shift downward and (for regular pref-
erences) decrease the demand for consumption. Figure 2.2 plots the monetary
equilibrium for the case when u < 0. Note that in this case the old have to pay
a monetary tax.

17Unlike the models discussed in Chapter 1 and 2.2, this model could reach the steady state
instantaneously.

18Without further restrictions it may very well be the case that other equilibria exist as well
even with the growth rate of money supply being constant.
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Figure 2.1: Monetary equilibrium with µ > 0
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Social planner’s problem
Formulating the social planner’s problem is a little bit trickier in an OLG

model than in the model with an infinitely-lived representative agent, since in an
OLG model there are different types of agents and we have to address the issue
how to formulate the social planner’s objective function. One natural choice
would be to give each generation equal weight. In that case the social planner’s
problem can be written as follows:19

max
{cyt ,cot}∞t=1

u(cy0, c
o
1) +

∑∞
t=1 u(cyt , c

o
t+1)

s.t. (1 + n)cyt + cot = 1 + n
(2.47)

19Note that cy0 is taken as given in the optimization problem.
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Figure 2.2: Monetary equilibrium with µ < 0
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The Euler equation for this problem is given by

(1 + n)
∂u(cyt−1, c

o
t )

∂cot
=
∂u(cyt , c

o
t+1)

∂cyt
. (2.48)

It is important to realize that besides this particular social planner’s solution,
there are many other Pareto optimal allocation. When we restrict ourselves
to allocations that are constant over time, we can be a little bit more specific.
Let ĉy and ĉo be the steady-state values of consumption that solve 2.48 and
society’s budget constraint.. All feasible allocations with co ≥ ĉo would be
Parteto optimal allocations. Lowering co to ĉo would make the current old
strictly worse off. In contrast, any feasible allocation with co ≤ ĉo and cy ≥ ĉy

would not be Pareto optimal, since one can make the current young as well
as future generations better of by reducing the value of consumption when
young to ĉy and raising their consumption when old to ĉo. In the first-period,
the reduction of the consumption of the young can be allocated to make, for
example, also the current old better off. We will use this property below.
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Note that in the social planner’s problem the optimality condition equates
the marginal utility of cyt with the marginal utility of cot (appropriately weighted
with the population growth rate), while the optimality condition for the indi-
vidual’s problem equates the marginal utility of cyt with the marginal utility
of cot+1 (appropriately weighted with the inflation rate). When we focus on
steady-state solutions, however, the timing difference doesn’t matter and we
can compare the social planner’s solution with the solution of the competitive
equilibrium. In particular, the allocation in the monetary competitive equilib-
rium coincides with the social planner’s solution if the first-order condition and
the budget constraint coincide, which happens if

pt
pt+1

= (1 + n). (2.49)

Since 1 + µ = (1 + n)pt+1/pt, the allocation of the competitive equilibrium
coincides with the social planner’s solution if µ = 0. The optimal (gross) rate
rate of inflation in this model is, thus, equal to 1/(1 +n). You might think that
this optimal rate of inflation differs in an important way from the Chicago rule
which stipulates a steady-state deflation rate equal to the rate of time preference.
This is not the case, however. The idea behind the Chicago rule is that agents
should not economize on holding real money balances, which requires a rate of
return on real money balances that is equal to the rate of return on alternative
assets, i.e., bonds. In the model of Section 2.2 with infinitely-lived agents, the
steady-state rate of return on bonds is equal to the rate of time preference and
optimality then requires a deflation rate equal to the rate of time preference.
Here a similar condition holds. That is, the rate of return on money has to
equal society’s rate of return, which is equal to the population growth rate.

The allocation in the monetary equilibrium is Pareto optimal when µ = 0.
The following proposition establishes the results for the case when µ 6= 0.

Proposition 4 If µ > 0 the steady-state monetary equilibrium is not Pareto
optimal and if µ ≤ 0 the steady-state monetary equilibrium is Pareto optimal.

The proof of this proposition is fairly intuitive. First consider the case when
µ > 0, which is graphically documented in Figure 2.1. Start with the case in
which µ = 0 and the budget constraint of the individual, thus, coincides with
the budget constraint of the population. Now move towards a situation with
µ > 0. Then two things happen with the budget constraint. First, there is an
upward shift in the budget constraint because of the positive nominal transfer
to the old. Second, the relative price of cy falls, since at the higher inflation rate,
the real rate of return is lower. Under the assumptions made on preferences this
means that the optimal demand for consumption when young should increase.
Consequently, when we compare the situation at µ > 0 with how it was at u = 0,
then the value of cy will be higher than ĉy and the value of co less than ĉo. From
the discussion above we know that this is not a Pareto optimal allocation. For
the case where µ < 0, the same reasoning can be used to show that the value
of cy will be less than ĉy and the value of co more than ĉo. From the discussion
above, we know that these are Pareto efficient.
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The ideas can be summarizes as follows. Figure 2.3 gives the graphical
representation of the social planner problem. The points with co < ĉo are
not optimal because you can move directly to the optimal combination of ĉy

and ĉo and the current old would not mind since their consumption increases.
The points with co > ĉo, however, are Pareto optimal. Although the young
would like to move towards the optimal combination, it would require lowering
consumption of the current old. The discussion in the last paragraph makes
clear that co < ĉo, when µ > 0 and that co > ĉo when µ < 0.

Figure 2.3: Steady state of social planner problem 
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OLG model with money and storage

The following proposition from Wallace (1980) gives the necessary and sufficient
conditions for the existence of a monetary equilibrium.20

Proposition 5 (existence of monetary equilibrium) At least one mone-
tary equilibrium exist if and only if (1 + n)/(1 + µ) ≥ 1 + r.

Proof. To proof the necessity part assume to the contrary that (1 + r)(1 +
µ) > (1 + n). Then

pt
pt+1

=
Ms
t+1

(1+µ)Ms
t

pt
pt+1

=
(1+n)Md

t+1

(1+µ)Md
t

pt
pt+1

=
(1+n)mt+1

(1+u)mt
≥ 1 + r

(2.50)

where the inequality follows from the fact that for agents to value money, the
return on holding money has to be at least as big as the return on the alternative
investment. Thus,

mt+1

mt
≥ (1 + r) (1 + µ)

(1 + n)

Combining this with the assumption that (1 + r)(1 + µ) > (1 + n) gives that
mt+1/mt > 1 or that real money balances are unbounded. This is impossible,
however, since from the budget constraint of the young we know that real money
balances are less than 1.

Proof. That the condition is sufficient can be shown by constructing a
steady-state monetary equilibrium. The agent’s first-order condition can be writ-
ten as

v(cyt , c
o
t+1) =

pt
pt+1

or (2.51)

v(1−mt,mt+1(1 + n)) =
mt+1

mt

1 + n

1 + µ
. (2.52)

It is enough to show that a constant value m = mt ∀t exists such that (i)
m ∈ (0, 1), (ii) m satisfies 2.52, and (iii) the return on money exceeds the
return on storage. That is,

mt+1

mt

1 + n

1 + υ
≥ 1 + r. (2.53)

This inequality follows directly from the assumption made. Moreover, from the
assumption made on the utility function it follows directly that v(1−m,m(1+n))
is strictly increasing increasing in m, converges to zero as m goes to zero and
goes to infinity as m goes to one.

When we consider the expression for steady-state inflation in 2.46 then the
condition of the proposition is very intuitive, since it says that the (steady state)
rate of return of investing in money investment must be at least as big as the

20Note that the conditions are trivially satisfied if there is no storage technology, that is,
when r = −1.
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return on the storage technology. The proposition extends this intuition to the
more general case.

We will now discuss the optimality of monetary and non-monetary equilibria
in a little bit more detail and distinguish between the case where n > r and the
case where n < r.

equilibria when n¿r

In this case, a non-monetary equilibrium clearly is not Pareto optimal. If the
economy would start using money it can switch to a steady-state allocation
that is strictly preferred by at least one generation, since the society’s budget
set contains the budget set that is generated by the storage technology. Suppose
that n > r and that a monetary equilibrium exits. The monetary equilibrium
will be Pareto optimal when µ ≤ 0, and will not be Pareto optimal when µ > 0.
Since in this case the storage technology is not used, it really is the same case
as the one without storage, which is covered in Proposition 4. When n > r
monetary equilibria can, thus, be both Pareto optimal and not Pareto optimal.

Monetary equilibria when n¡r

In this case, a non-monetary equilibrium clearly is Pareto optimal. Interestingly,
a monetary equilibrium—if it exists—is also Pareto optimal.

When n < r, a monetary equilibrium cannot exist when u > 0. This result
is fairly intuitive. The steady-state gross rate of return on money is equal to
(1 + n)/(1 + u), which can never be bigger than the return on storage when
µ > 0 and r > n. But a monetary equilibrium can still exist when µ ≤ 0.
One such equilibrium is represented in Figure 2.4. Note that in the monetary
equilibrium the storage technology is not used. Even though the allocation
in the monetary equilibrium is on society’s budget constraint, which is below
the constraint when the economy would use storage, it can be shown that the
allocation in the monetary equilibrium is Pareto optimal. The reason is that
this economy cannot switch from an economy that uses money to save for old
age to an economy that uses storage to save without hurting the generation
of the current old, since they are relying on the young to support them.21 It
clearly would have been better if this economy never would have ended up in
a monetary equilibrium but given that it did, it cannot start using the more
favorable storage technology without hurting some generation.

Note that there is no incentive for individuals to switch to storage either.
In this monetary equilibrium the old will be taxed Tt+1/pt+1 in period t + 1
whether they use storage or not. Therefore, the consumption of the old when
money is used is higher than the consumption of the old when storage is used,

21The proof is in Wallace (1980). It is actually not trivial. For example, you might think
that if r is high enough, then the current young can give the current old co,t+1 and simply
invest the remainder at r. If r is high enough then the young should still be better off. The
flaw in this reasoning is that for such a high r you are violating the condition of the existence
of a monetary equilibrium.
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that is, (pt/pt+1)(1− cyt ) +Tt+1/pt+1 > (1 + r)(1− cyt ) +Tt+1/pt+1 for any level
of cyt .

Figure 2.4: Pareto Optimal Monetary Equilibrium with r > n 
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2.4 Exercises

Exercise 2.1: Consider the cash-in-advance economy characterized by the fol-
lowing optimization problem
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max ct+j , ht+j , kt+1+j,

Mt+1+j


∞

j=0

E

 ∞∑
j=0

βju(ct+j , 1− ht)| It


s.t. kt+1+j +

Mt+1+j

pt+j
+ τt+j = θt+jf(kt+j , ht+j)

+(1− δ)kt+j +
(
Mt+j+(Ms

t+j+1−M
s
t+j)

pt+j
− ct+j

)
ct+j ≤

Mt+j+(Ms
t+j+1−M

s
t+j)

pt+j

kt and Mt predetermined

(2.54)

and the following equilibrium condition

Mt+1 = Ms
t+1. (2.55)

Let
µt = Ms

t /M
s
t+1. (2.56)

The purpose of this question is to show that if we add more noise to the
money supply, but keep expected money growth rates the same, only the solution
for prices changes. That is, in this cash-in-advance economy, money only has
real effects if it changes the expected growth rate of money. In particular,
suppose that we introduce a new process for the money growth rate µt = µtεt,
where εt is a random variables with mean equal to one and independent of θt
and µt. Thus, Eµt =Eµt. First, conjecture what prices are under the new law
of motion for the money growth rate relative to old prices. Second, show that
consumption, capital, and labor supply are not affected.

Exercise 2.2: Consider the optimization problem in 2.26 and consider the
constant time path for capital kt = k where kss < k < kgr. Show that this
time path for capital is not optimal by showing that the agent can increase his
life-time utility by reducing his capital stock permanently with ε units.

Exercise 2.3: Suppose that the optimization of the young is given by

max
cyt ,c

o
t+1,kt+1

u(cyt ) + βu(cot+1)

s.t. cyt + kt+1 = τ
cot+1 = kαt+1 + (1− δ)kt+1

(2.57)

The utility function u(·) is monotone and strictly concave and satisfies the
Inada conditions. Show that overaccumulation will occur if τ is large enough.
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