
Chapter 1

Dynamic Optimization
Problems

1.1 Deriving first-order conditions: Certainty case

We start with an optimizing problem for an economic agent who has to decide
each period how to allocate his resources between consumption commodities,
which provide instantaneous utility, and capital commodities, which provide
production in the next period. At this point we assume that this agent doesn’t
interact with anybody else in the economy. This might seem strange since the
goal is to describe the behavior of macroeconomic variables. There are environ-
ments, however, in which the behavior of an economy with a large number of
different agents can be described by the optimization problem of a representa-
tive agent. The assumptions to justify such a representative-agent approach are
strong but the relative simplicity makes it the logical starting point. The agent’s
current period utility function, u(ct), is assumed to depend only consumption,
ct. The technology that turns capital, kt, into production is described by the
production function f(kt). Here kt measures the existing capital stock chosen
during t− 1 and productive at the beginning of period t. Because of deprecia-
tion during production, only (1− δ) will be available during period t. Typically
the utility function and the production function are assumed to be continuous,
differentiable, strictly increasing and concave in its argument and to satisfy the
Inada conditions. A function g (x) satisfies the Inada conditions if

lim
x→0

∂g(x)

∂x
=∞ and lim

x→∞

∂g(x)

∂x
= 0.

The agent maximizes the following objective function:

3



max{ct,kt+1}∞t=1

∑∞
t=1 β

t−1u(ct)

s.t. ct + kt+1 ≤ f(kt) + (1− δ)kt
kt+1 ≥ 0

k1 = k

(1.1)

The constraints have to hold for every t = 1, 2, 3, · · · . We will refer to this
type of dynamic maximiation problem as the sequence problem, because the
solution is a sequence. The objective function indicates that the agent lives
forever, but he discounts future consumption with the discount factor β.1The
budget constraint indicates that the price of a capital commodity is equal to
the price of one consumption commodity.

The first step in solving this maximization problem is to derive the first-order
conditions using the Lagrangian. Before we do this, however, we multiply the
period t budget constraint with βt−1 and rearrange terms so that the constraint
has the standard non-negativity form. This gives

βt−1 (f(kt) + (1− δ)kt − ct − kt+1) ≥ 0. (1.2)

This clearly doesn’t change the problem, but it makes the interpretation of the
Lagrange multiplier somewhat easier. The Lagrangian is given by

L(c1, c2, · · · , k2, k3, · · · , λ1, λ2, · · · )
=
∑∞
t=1 β

t−1 {u(ct) + λt [f(kt) + (1− δ)kt − ct − kt+1]} . (1.3)

Since there is a budget constraint for each period t, there also is a Lagrange
multiplier, λt, for every period. Note that we have ignored the non-negativity
constraint on capital. For regular infinite-horizon problems, this constraint is
never binding. To see why assume that the economic agent organizes a mag-
nificent party in period T , consumes all his period T resources, and sets kt+1

equal to zero. For all periods after period T, he wouldn’t have any resources
and his consumption would be equal to zero. According to the Inada condition,
the marginal utility of consumption for a starving agent would be so high that
the agent can always improve his utility by reducing his consumption in period
T and invest the resources in capital.

The optimization problem above is identical to the following max-min prob-
lem:

max{ct,kt+1}∞t=1
min{λt}∞t=1

∑∞
t=1 β

t−1u(ct)+

λt [f(kt) + (1− δ)kt − ct − kt+1]}
s.t. λt ≥ 0

k1 = k

(1.4)

Basically, we have replaced the inequality of the budget constraint by the
(simpler) non-negativity constraint on λt. The first-order conditions for this
saddle-point problem are the following equations, which have to hold for all
t ≥ 1:

1The discount rate is equal to (1 − β)/β.
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∂L(·)
∂ct

= 0 :
∂u(ct)

∂ct
= λt (1.5a)

∂L(·)
∂kt+1

= 0 : −λt + βλt+1

[
∂f(kt+1)

∂kt+1
+ (1− δ)

]
= 0 (1.5b)

∂L(·)
∂λt

λt = 0 : [f(kt) + (1− δ)kt − ct − kt+1]λt = 0 (1.5c)

∂L(·)
∂λt

≥ 0 : [f(kt) + (1− δ)kt − ct − kt+1] ≥ 0 (1.5d)

λt ≥ 0 (1.5e)

Since there is a non-negativity restriction on the value of λt we have to use the
two-part Kuhn-Tucker conditions to derive the first-order conditions associated
with the Lagrange Multiplier. If you have trouble deriving these first-order con-
ditions you may want to write out the summation in equation 1.4 for a couple
of periods and then differentiate with respect to, for example, c3, k4, and λ3.
From equation 1.5c, we see that if the budget constraint is not binding in pe-
riod t then λt = 0. The period t Lagrange multiplier is equal to the increase
in the value of the objective function when the period t budget constraint in-
creased with one unit and, thus, equals the marginal utility of wealth.2 In this
model the marginal utility of wealth is equal to the period t marginal utility of
consumption.3

Transversality condition. Because of the infinite dimension of the opti-
mization problem, we also have to consider the transversality condition. For
the problem in 1.4 the transversality condition is given by

lim
T→∞

βT−1
∂u(cT )

∂cT
kT+1 = 0. (1.6)

To understand the form and the reason for the transversality condition, consider
the following finite-period optimization problem:

max{ct,kt+1}Tt=1

∑T
t=1 β

t−1u(ct)

s.t. ct + kt+1 ≤ f(k) + (1− δ)kt
kt+1 ≥ 0

k1 = k

(1.7)

2If we would not have multiplied the budget constraint with βt,then λt would have been
equal to βt∂u(ct)/∂ct.

3In models where it takes effort to transform wealth into consumption (e.g. because of
search costs) then the marginal utility of consumption would be strictly larger than the
marginal utility of wealth.
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The corresponding saddle-point problem is given by

max{ct,kt+1}Tt=1
min{λt}Tt=1

∑T
t=1 β

t−1u(ct)

+λt [f(kt) + (1− δ)kt − ct − kt+1]}
s.t. λt ≥ 0
kT+1 ≥ 0

k1 = k

(1.8)

Note that for the last period we do not ignore the non-negativity constraint
on capital. If we would ignore this constraint, the economic agent would set
kT+1 equal to some enormous negative number and consume a lot in period
T . The first-order conditions for this problem are identical to those in 1.5 for
t = 1, · · · , T, except that the first-order conditions corresponding to kT+1 are
given by

∂L(·)
∂kT+1

kT+1 = 0 : −βT−1λT kT+1 = 0 (1.9a)

∂L(·)
∂kT+1

≤ 0 : −λT ≤ 0 (1.9b)

This equation tells us that solving the constrained optimization problem requires
that kT+1 has to be set equal to zero unless λT is equal to zero, that is, unless
the economic agent is completely satiated with consumption. The transversality
condition can be obtained by taking the limit of 1.9a as T → ∞. The reason
why we may need the transversality condition is that the first-order conditions
only determine what is optimal from period to period, but might ignore the
overall picture. The transversality condition says that the discounted value of
the limiting capital stock cannot be positive. If it would be positive then the
agent is building up a capital stock that is too large.

Necessary conditions versus solutions. Consider the following one-dimensional
optimization problem:

max
z
h(z), (1.10)

where h(·) is a continuous and differentiable function. Then the first-order
condition

∂h(z)

∂z
= 0 (1.11)

is not a solution to the system. The first-order condition only gives a condition
that any solution to the system must satisfy. Finding the values for z that
satisfy equation 1.11 might be easy or difficult depending on the functional
form of ∂h(z)/∂z. Similarly, you have to realize that finding a time path of
consumption and capital that satisfies the first-order conditions isn’t always
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that simple. In fact, in most cases we have to rely on numerical procedures to
obtain an approximate solution. Furthermore, if z∗solves 1.11 but the second
derivative of h(z) at z = z∗ is positive then z∗ is a minimum and not a maximum.

Showing what the necessary and sufficient conditions are for an infinite-
dimensional optimization problem, is not as easy as it is for the one-dimensional
optimization problem in 1.10. There are basically three methods to prove that
first-order conditions like equations 1.5 are necessary conditions for an optimiza-
tion problem. Those three methods are (i) calculus of variations,4 (ii) optimal
control, and (iii) dynamic programming. Optimal control requires the weakest
assumptions and can, therefore, be used to deal with the most general problems.

Ponzi schemes and transversality conditions. We now change the prob-
lem described above in the following way. Instead of assuming that the agent
has a production technology, we assume that each period he receives an endow-
ment yt and he can smooth his consumption by borrowing and lending at the
risk-free rate r. We assume that the interest rate is equal to the discount rate
= (1− β)/β. The optimization problem is given by

max{ct,bt+1}∞t=1

∑∞
t=1 β

t−1u(ct)

s.t. ct + bt+1 ≤ yt + (1 + r)bt
b1 = b

(1.12)

In this model the agent can save by choosing a positive value for bt+1 and he
can borrow, and accumulate debt, by choosing a negative value. The first thing
to realize is that there is a great opportunity for the economic agent to have a
wonderful life. Without any constraint on bt+1 he can borrow (and consume)
as much as he wants and just pay off the interest payments by borrowing more.
These kinds of tricks are called Ponzi-schemes and we have to rule those out by
imposing some kind of borrowing constraint. One way to do this is to impose
the ad hoc borrowing constraint that bt ≥ b̃ < 0. This means that debt (−bt)
cannot be too big. This borrowing constraint rules out Ponzi-schemes and if b̃ is
a large enough (negative) number then this constraint is unlikely to be binding.
The optimization problem is now given by

max{ct,bt+1}∞t=1

∑∞
t=1 β

t−1u(ct)

s.t. ct + bt+1 ≤ yt + (1 + r)bt
bt+1 ≥ b̃
b1 = b

(1.13)

When we make the assumption that the budget constraint is always binding
and the debt ceiling is never binding then the first-order conditions would be
equal to

∂u(ct)

∂ct
=
∂u(ct+1)

∂ct+1
(1.14)

4A good place to start is to read Section 4.5 in Stockey and Lucas (1989) where it is shown
that the first-order conditions and the transversality condition for the standard growth model
are sufficient conditions for a solution when the objective function is concave.
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and
ct + bt+1 = yt + (1 + r)bt. (1.15)

From 1.14 we learn that consumption is constant over time. But this still
allows us for many admissable time paths. For example, suppose that yt = 10
and ct = 9 for all t. Even though this time path for consumption satisfies the
intertemporal first-order condition, it clearly it is not optimal to always consume
an amount less than the income earned. If b1 = 0 then the time path for bond
holdings implied by this consumption path satisfies

b2 = 1, b3 = 1 + (1 + r), b4 = 1 + (1 + r) + (1 + r)2, · · · . (1.16)

Since this time path doesn’t satisfy the transversality condition

lim
T→∞

βT−1
∂u(cT )

∂cT
bT+1 = 0 (1.17)

we know that this is not an optimal solution.
Occasionally one can hear the comment that the transversality can be used to

rule out Ponzi schemes. First, note that the transversality condition is meant to
do the opposite, that is, it is meant to prevent savings from becoming too large,
not from becoming too negative. Although the transversality condition clearly
rules out some Ponzi schemes, it cannot be used to rule out Ponzi schemes in
general as becomes clear in the following example.

Suppose that utility is bounded and that, in particular, the marginal utility
of consumption is equal to zero when ct = 5, 000, 000. If the only constraints
were the budget constraint and the transversality condition you could still play
a Ponzi scheme, for example by choosing a consumption path such that con-
sumption reaches a value above 5,000,000 in the limit.

1.2 Deriving first-order conditions: The uncer-
tainty case

Now suppose that productivity also depends on a random technology shock. In
particular, let output be given by

f(θt, kt), (1.18)

where θt is a first-order Markov process. We say that θt is an nth-order Markov
process if the distribution of θt conditional on n lags is the same as the density
of θt conditional on all lags. Thus,

prob(θt < θ|θt−1, · · ·, θt−n) = prob(θt < θ|θt−1, · · ·). (1.19)

Typical production function and law of motion for θt used in the literature
are

f(θt, kt) = eθtkαt (1.20)
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and

θt = ρθt−1 + εt, (1.21)

where εt is a white noise random variable. The maximization problem can now
be written as follows:

max{ct,kt+1}∞t=1
E
[∑∞

t=1 β
t−1u(ct)|I1

]
s.t. ct + kt+1 ≤ f(θt, kt) + (1− δ)kt

kt+1 ≥ 0

k1 = k

(1.22)

We assume that the information set at period t consists of all current and
lagged values of θt, kt+1, and ct. Being clear about the information set and
what the solution can depend on is important. The agent would like to make
his period t decisions depend on future values of θt, but we will not allow him
to do this, since these values are not yet known in period t. So a solution is a
plan that chooses capital and consumption conditional on the realized values of
θt.

Even if you are only interested in knowing what the time path for consump-
tion is for one particular realized time path of θt, solving for this consumption
series requires solving for the complete plan, that is, the consumption path for
all possible realizations. The reason is that you as researcher may only be in-
terested in studying consumption for one particular time path of θt, the agent
faces an uncertain future and his decisions today cannot be determined without
understanding what he will do in the future for all possible outcomes.

Solving the optimization problem in 1.22 implicitly requires solving the same
optimization problem starting in period two, three, etc.. It is often useful to
explicitly recognize this and write 1.22 as

max{ct+j ,kt+1+j}∞j=0
E
[∑∞

j=0 β
ju(ct+j)|It

]
s.t. ct+j + kt+1+j ≤ f(θt+j , kt+j) + (1− δ)kt+j

kt+1+j ≥ 0
kt predetermined

(1.23)

In this problem, the constraints have to hold for every j = 0, 1, 2, · · · . The
transversality and first-order conditions for this optimization problem are equal
to

∂L(·)
∂ct

= 0 : ∂u(ct)∂ct
= λt

∂L(·)
∂kt+1

= 0 : −λt + βE
{
λt+1

[
∂f(θt+1,kt+1)

∂kt+1
+ (1− δ)

]}
= 0

∂L(·)
∂λt

λt = 0 : [f(θt, kt) + (1− δ)kt − ct − kt+1]λt = 0
∂L(·)
∂λt
≥ 0 : [f(θt, kt) + (1− δ)kt − ct − kt+1] ≥ 0

λt ≥ 0

limJ→∞ βJE
[
∂u(ct+J )
∂ct+J

kt+J | It
]

= 0

(1.24)
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To construct these first-order conditions we used that E[h(xt)| It] = h(xt) when
xt is an element of It and h(·) is a measurable function.

Information set and state variables. Above we have been somewhat vague
about the information set. In principle it could include current and lagged
values, but the question arises whether all this information is really useful.
Let’s spend some time thinking what the economic agent really needs to know
in period t to make his decision. The agent clearly cares about his resources
in the current period, which are determined by θt and kt. He also cares about
future values of the productivity shock. Since θt is a first-order Markov process,
no information other than θt is useful in making predictions. It thus makes sense
to assume that the agent bases his decisions on θt and kt. These variables are
called the state variables.5 Suppose that θt is an i.i.d. random variable. This
means that θt is not useful in predicting future values of θt. in this case the value
of current production yt = θt f(kt) is a sufficient state variable and one would
not need to know both θt and kt. Figuring out what the state variables are is
not always an easy problem. In fact, there isn’t always an unique choice for the
set of choice variables.6 At this point, it is typically better not to spend too
much energy figuring out whether one can reduce the set of state variables. Note
that in the i.i.d. case it is not wrong to use both θt and kt as state variables.
It is just not the most efficient choice. In contrast, if θt is not i.i.d. then using
θt f(kt) as the only state variable is wrong.

Beginning-of-period or End-of-Period stock variables There is one te-
dious detail that we have to discuss. Above, kt denoted beginning-of-period
capital. In the literature one also encounters a different notation, namely one
in which kt stands for end-of-period capital. This obviously doesn’t change the
model. The budget constraint would then be equal to

ct + kt = f(θt, kt−1) + (1− δ)kt−1 (1.25)

and the Euler equation would be given by

−∂u(ct)

∂ct
+ βE

[
∂u(ct+1)

∂ct+1

(
∂f(θt+1, kt)

∂kt
+ (1− δ)

)
| It
]

= 0

The advantage of using end-of-period capital stock is that all variables in the
information set of period t have a subscript t. But using beginning-of-period
capital is less cumbersome in section 1.5 when we discuss the competitive equi-
librium corresponding to this model.

5In the optimal control literature one often doesn’t include the exogenous variables that
affect the solution in the set of state variables. Nevertheless, it is useful to be aware of all
variables that determine the decisions in period t especially when one plans on actually solving
the system. I recommend to follow the standard practice in macro and to include in the set
of state variables all variables that affect the agents’ decisions.

6For example, sun spot solutions may be possible in which solutions depend on variables
just because agents believe these variables matter.
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1.3 Dynamic Programming

The problem described above has what is called a recursive structure. Every
period the exact same problem is solved. Of course, the information set is
different every period because the values of θt and kt change over time. But
when values of θt and kt in period t = 341 are identical to those in period
t = 1253 then the economic agent will make the exact same choices in both
periods. Thus, we would have k342 = k1254. An example of a problem that is
not recursive is the finite-life problem 1.7. When t = T − 1 in this problem
then the agent is close to the end of his life and typically will make a different
investment choice than when t = 1, even when the state variables are the same.

We will refer to the maximized value of the optimization problem in equation
1.23 as v(·). Since the state variables are θt and kt we know that the value
function depends on θt and kt. Thus,

v(θt, kt) = max{ct+j ,kt+j+1}∞j=0
E
[∑∞

j=0 β
ju(ct+j)| It

]
s.t. ct+j + kt+1+j ≤ f(θt+j , kt+j) + (1− δ)kt+j

kt+1+j ≥ 0

(1.26)

Solving the problem starting in period t also implies behaving optimally in
period t + 1. So if one has found a function v(θt, kt) that solves 1.26 then this
solution also satisfies

v(θt, kt) = maxct,kt+1
u(ct) + βE [v(θt+1, kt+1)| It]

s.t. ct + kt+1 ≤ f(θt, kt) + (1− δ)kt
kt+1 ≥ 0

(1.27)

The question arises whether the opposite is also true. That is, does a function
v(θt, kt) that solves 1.27 also solve 1.26. Stockey and Lucas (1989) show that
under fairly weak assumptions the answer is yes if the following transversality
condition is satisfied.

lim
t→∞

Et
[
βtv(θt, kt)

]
= 0 for all feasible plans for kt. (1.28)

The reason that you need Equation 1.28 is fairly intuitive. If you iterate on
Equation 1.27 then you get an infinite sum as in 1.23 and βtv(θt, kt). Equation
1.28 ensures that this additional term goes to zero.

The equation in 1.27 is called the Bellman equation. The advantage is that it
turns an infinite-horizon optimization problem in a finite-horizon optimization
problem. You might think that the optimization in 1.27 is impossible to solve,
since the solution, i.e., v(θt, kt), shows up on the right-hand side of the equation
as part of the function to be maximized. Nevertheless, working with the Bell-
man equation is typically easier than working with the original infinite horizon
problem. Especially proving properties like existence, uniqueness, continuity,
and differentiability of the solution are easier with 1.27 than with 1.26.
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Deriving first-order conditions using the Bellman equation. In the re-
cursive formulation of the problem, we don’t care anymore about the particular
time period for which we are solving the problem. For this particular problem
it is enough to distinguish between the current value and next period’s value.
Therefore, we let x denote the current-period value of the variable x and we let
x+1 denote next period’s value. When the marginal utility of consumption is
positive then the budget constraint will always be binding. This allows us to
substitute out consumption using the budget constraint. After doing this the
problem is equal to7

v(θ, k) = maxk+1
u (f(θ, k) + (1− δ)k − k+1)

+βE [v(θ+1, k+1)] .
(1.29)

The first-order condition for this problem is given by

∂u(·)
∂c

= βE

[
∂v(θ+1, k+1)

∂k+1

]
(1.30)

The problem is that this expression contains the unknown function v(·). Using
the envelope condition, however, we can figure out what this derivative is equal
to. Differentiating 1.29 with respect to k gives

∂v(θ, k)

∂k
=
∂u(·)
∂c

[
∂f(θ, k)

∂k
+ (1− δ)

]
(1.31)

Leading this equation one period and substituting it into 1.30 gives

∂u(c)

∂c
= βE

{
∂u(c+1)

∂c+1

[
∂f(θ+1, k+1)

∂k+1
+ (1− δ)

]}
(1.32)

Note that this is the same Euler equation given above in 1.24. When we don’t
substitute out the budget constraint we can derive the same Euler equation. In
that case the optimization problem is equal to

v(θ, k) = maxc,k+1
minλ u(c) + βEv(θ+1, k+1)

+λ [f(θ, k) + (1− δ)k − c− k+1]
(1.33a)

s.t. λt ≥ 0 (1.33b)

7To simplify the notation we suppress the information set of the expectation in the Bellman
equation. Also, we have ignored the non-negativity constraint on capital which would be
binding only for irregular prefences.
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The first-order conditions for this problem are given by

∂u(c)

∂c
= λ (1.34a)

λ = βE

[
∂v(θ+1, k+1)

∂k+1

]
(1.34b)

[f(θ, k) + (1− δ)k − c− k+1]λ = 0 (1.34c)

[f(θ, k) + (1− δ)k − c− k+1] ≥ 0 (1.34d)

λ ≥ 0 (1.34e)

Substituting out λ gives the key condition

∂u(c)

∂c
= βE

[
∂v(θ+1, k+1)

∂k+1

]
(1.35)

Using the envelope condition, we can figure out what the derivative on the
right-hand side of the equation is equal to

∂v(θ, k)

∂k
= λ

[
∂f(θ, k)

∂k
+ (1− δ)

]
(1.36)

Leading this equation one period and substituting it into 1.35 gives 1.32.

Transversality condition When we derive the first-order condition using
dynamic programming, i.e. Equation 1.27, then there is no need for a transver-
sality condition. The reason is that the optimiziation problem of the Bellman
equation is a finite problem. Of course, the original problem is the infinite hori-
zon problem and one can only use the Belmann if the tranversality condition
1.28 is satisfied. Thus, if one derives the first-order conditions with the Bellman
equation one has to check transversality condition 1.28 and if one derives the
first-order conditions directly using the Lagrangian for the infinite horizon prob-
lem, then one needs the transversality condition 1.6. We will now show that
?? under some weak conditions actually implies the transversality condition of
the original problem 1.6. To simplify the analysis we focus on the case without
uncertainty.8

If we substitute out consumption using the budget constraint, then we can
write the infinite-horizon optimization problem as

max{kt+1}∞t=1

∑∞
t=1 β

t−1ũ(kt, kt+1)

s.t. kt+1 ≥ 0

k1 = k
(1.37)

and the transversality condition 1.6 as

lim
T→∞

−βT−1ũ2(kT , kT+1)kT+1 = 0. (1.38)

8The discussion here is based on Kamihigashi (2005).
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Here ũ(kt, kt+1) is defined as u(f(kt) + (1− δ)kt−kt+1). The Bellman equation
can now be written as

v(kt) = max
kt+1

ũ(kt, kt+1) + βv(kt+1) (1.39)

s.t. kt+1 ≥ 0 (1.40)

and if the utility function satisfies the Inada conditions, we have an interior
solution and the first-order condition is equal to

−ũ2(kt, kt+1) = βv′(kt+1) (1.41)

The function v(kt) inherits the concavity of ũ(kt, kt+1) under fairly weak regu-
larity conditions.9 Moreover, we assume that ũ(0, 0) = 0.10 then we have

0 ≤ −ũ2(kt, kt+1)kt+1 = βv′(kt+1)kt+1 ≤ βv(kt+1) (1.42)

and

0 ≤ −βT−1ũ2(kT , kT+1)kT+1 ≤ βT v(kT+1). (1.43)

If the transversality condition 1.28 is satisfied, then the rightmost side con-
verges to zero. Consequently, the middle term converges to zero as well. Thus,
1.28 implies 1.38.

Necessity of transversality condition There are several articles in the
literature that discuss whether the transversality condition is necessary for an
optimal solution. We know that the transversality condition is necessary in
”regular” models. How large this class of regular models is, is an interesting
research topic. An important contribution is Kamihigashi (2005) who shows
that the transversality condition is necessary in stochastic models with bounded
or constant relative risk aversion utility. His setup covers a lot of models in
macroeconomics. Note that Kamihigashi (2005) does not show that outside the
class of functions considered the transversality condition is not necessary. The
set of models for which we know the transversality to be necessary has increased
over time and is likely to grow even further. That set of models is not, however,
the complete universe of models. There are some examples where we know that
the transversality condition is violated at the optimal solution. A key aspect of
such known examples is that utility is not bounded. One such example is the
following

max{kt+1}∞t=1

∑∞
t=1 β

t−1u(f(kt)− kt+1)

s.t. kt+1 ≥ 0

k1 = k
(1.44)

9See Theorem 4.8 in Stockey and Lucas (1989).
10This is an innocuous assumption if utility is finite for all feasible time paths.
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with u(ct) = c1−γt /(1−γ), f(kt) a regular neoclassical production function, and
β = 1. The optimal time path converges to the Golden rule capital stock, i.e.,
the capital stock that satisfies

f ′(k) = 1. (1.45)

But if the capital stock converges to a constant then the transversality condition
is not satisfied.

1.4 Analytical Solutions to Some Special Mod-
els

We know that a solution to the optimization problem has to satisfy the first-
order conditions and under regularity conditions like a concave utility and pro-
duction function, the first-order conditions are typically not only necessary but
also sufficient. If the problem is recursive, then knowledge about the state vari-
ables gives us a list of potential arguments for the policy functions. To solve
for the actual functional form, however, one typically needs to use numerical
techniques. Nevertheless, there are a couple of examples where we know how
to solve for the model analytically. The best known example is probably the
following version of the neoclassical growth model:

max{ct+j ,ht+j ,kt+1+j}∞j=0
E
[∑∞

j=0 β
j (ln(ct+j) +B ln(1− ht+j)) |It

]
s.t. ct+j + kt+1+j ≤ θt+jkαt+jh

1−α
t+j

kt+1+j ≥ 0
kt predetermined

(1.46)

Note that this problem is just like the one in 1.23. We have only specified a
particular utility and production function and assumed that capital fully depre-
ciates within one period.11 The first-order condition for this problem are given
by

1

ct
= βE

[
αθt+1k

α−1
t+1 h

1−α
t+1

ct+1
|It

]
(1.47a)

ct + kt+1 = θtk
α
t h

1−α
t (1.47b)

1

ct
(1− α)θtk

α
t h
−α
t =

B

1− ht
(1.47c)

11Clearly not a very realistic assumption.
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The solutions to this set of equations are equal to

ht = h =
1− α

B(1− αβ) + (1− α)
(1.48a)

ct = (1− αβ)θtk
α
t

(
1− α

B(1− αβ) + (1− α)

)1−α

(1.48b)

kt+1 = αβθtk
α
t

(
1− α

B(1− αβ) + (1− α)

)1−α

(1.48c)

It is easy to check that these are indeed solutions by substituting them into
1.47. Note that the solutions (also called policy functions) are functions of the
current productivity shock θt and the capital stock kt. The system in 1.48 gives
the solution independent of what order Markov process the technology shock θt
is. You might be surprised by this because if θt is, for example, a second-order
Markov process then θt−1 helps to predict θt+1. So the question arises why in
this particular example, the investment function doesn’t depend on θt−1. The
reason is that 1.47a is a very special Euler equation for which the argument
inside the conditional expectation actually is not a random variable at all.12

What happens here is that a higher value of θt+1 raises the marginal product
of capital (which should increase investment in period t) but it also lowers the
marginal utility of consumption in period t + 1 (which reduces the investment
in period t). In this case the effects exactly off set each other. The economic
agent is, thus, not interested in predicting θt+1. Moreover, an increase in θt has
a wealth effect and a substitution effect on hours that exactly offset each other.

Note that in this particular example one could use current income, θtk
α
t h

1−α,
as the (single) state variable. But as we mentioned before, it is in general better
not too spend too much emphasis trying to reduce the set of state variables
until you understand the model well. It typically is better to have a redundant
state variable (which will play no role in the policy functions) then to miss one
state variable (which will typically lead to an incorrect solution).

Why hard to find an analytical solution in general? Consider the first-
order condition of the agent’s optimization problem after we have used the
budget constraint to substitute out consumption.

u′(f(θ, k) + (1− δ)k − k+1)
= βE {u′(f(θ+1, k+1) + (1− δ)k+1 − k+2) [f ′(θ+1, k+1) + (1− δ)]} (1.49)

We know it makes sense that the solution for k+1 is a function of θ and k, thus,
k+1 = g(θ, k). Leading this expression one period we get k+2 = g(θ+1, k+1) =
g(θ+1, g(θ, k)). Substituting this function into 1.49 gives

12You can easily check this by using the policy function to substitute out ct+1.
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u′(f(θ, k) + (1− δ)k − g(θ, k))

= βE

{
u′ [f(θ+1, g(θ, k)) + (1− δ)g(θ, k)− g(θ+1, g(θ, k))]

× [f ′(θ+1, g(θ, k)) + (1− δ)]

}
(1.50)

Let’s make life a bit easier and use explicit functional forms and let’s assume
that we know the values of the parameters used. For example, let

u(c) =
c1−γ − 1

1− γ
and let

f(θ, k) = θkα.

Then 1.50 can be written as

[θkα + (1− δ)k − g(θ, k)]
−γ

= βE

{
[θ+1g(θ, k)α + (1− δ)g(θ, k)− g(θ+1, g(θ, k))]

−γ

×
[
αθ+1g(θ, k)α−1 + (1− δ)

] }
(1.51)

The problem is that g(·) is a function and we have a priori no idea on what
the functional form is. Thus we are searching for a solution in a very big space.
Now the good thing is that we have many equations to solve for this object since
1.50 has to hold for all values of θ and k. That is, we have to solve for an infinite
number of values, namely a function, but we also have an infinite number of
equations. Note that if we know the functional form then the problem becomes
much simpler. For example, suppose the policy function is known to be linear
in θ and k. Then we only need three combinations of θ and k and Equation
1.51 evaluated at these three observations gives us three equations to solve for
the three coefficients of the linear policy rule. Of course, one still would have to
figure out how to deal with the conditional expectation, i.e., the integration but
relative to the infinite dimension of the original problem, this is actually less of
a problem.

1.5 Representative Agent Assumption

In this section we will motivate the model used in sections 1.2 and 1.3. There
we basically assumed that the economic agent had a little production plant in
his backyard and both the consumption and the production decision are made
by the same economic agent as if he is the only one in the world. The solution
that comes out of this version of the model is called the social planner’s solution.
In a social planner’s problem there are no market prices. The social planner
simply maximizes the agents’ utility subject to what is feasible.

You might think that this is a very silly model since any actual macro econ-
omy has many firms and consumers. And indeed it is a silly model, but not
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as silly as it looks at first sight. To demonstrate the last part of this claim we
proceed in three steps. In the first step, we build an economy in which there are
consumers who work at firms and make investment decisions and firms that hire
workers and capital. In this economy there will be a wage rate and a rental price
for capital and we will refer to the solution of this problem as the competitive
equilibrium. In the second step, we show that the solution to this competitive
equilibrium is identical to the social planner’s version of the economy. In both
the competitive model and the social planner’s model, we work with a large
number of identical agents, or equivalently with a representative agent. In the
third step, we describe an environment in which an economy with many differ-
ent agents can be described exactly with a model with one such representative
agent.

1.5.1 Social Planner’s Problem

We will start by extending the model by including a variable labor supply. In
particular, we now assume that production also depends on the amount of labor
supplied, ht, and the current-period utility also depends on leisure, lt = 1− ht.
Using some standard functional forms the optimization problem can now be
written as

max{ct+j ,ht+j ,kt+1+j}∞j=0
E
[∑∞

j=0 β
ju(ct+j , 1− ht+j)|It

]
s.t. ct+j + kt+1+j ≤ θt+jkαt+jh

1−α
t+j + (1− δ)kt+j

kt+1+j ≥ 0
kt predetermined

(1.52)

The transversality and first-order conditions for this optimization problem are
equal to

∂L(·)
∂ct

= 0 : ∂u(ct,1−ht)∂ct
= λt

∂L(·)
∂ht

= 0 : λt(1− α)θt

(
kt
ht

)α
= −∂u(ct,1−ht)∂ht

= ∂u(ct,lt)
∂lt

∂L(·)
∂kt+1

= 0 : −λt + βE

{
λt+1

[
αθt

(
kt+1

ht+1

)α−1
+ (1− δ)

]}
= 0

∂L(·)
∂λt

= 0 : ct + kt+1 = θtk
α
t h

1−α
t + (1− δ)kt

limJ→∞ βjE
[
∂u(ct+J ,ht+J )

∂ct+J
kt+1+J | It

]
= 0

(1.53a)

1.5.2 Competitive Equilibrium

First, we will describe the behavior of firms who hire workers at the wage rate, w,
and rent capital at the rental rate, r. We assume that there are a large number
of firms and that markets are competitive. In this model, firms’ decisions don’t
have any intertemporal consequences. Consequently, the standard assumption
that firms maximize the net-present-value of discounted future profits implies
that firms maximize profits period by period. The maximization problem for
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firm j is then given by

max
k̃jt ,h̃

j
t

θt

(
k̃jt

)α (
h̃jt

)1−a
− rtk̃jt − wth̃

j
t

where k̃jt and h̃jt are the demand by firm j for capital and labor, respectively.
We assume that all firms face the same aggregate productivity shock θt. The
first-order conditions for this problem are as follows:

αθt

(
k̃jt

h̃jt

)α−1
= rt (1.54a)

(1− α)θt

(
k̃jt

h̃jt

)α
= wt (1.54b)

You might think that the two equations in 1.54a and 1.54b will in general
give different answers for the optimal ratio of capital to hours, k̃jt /h̃

j
t . Another

awkward feature about this optimization problem is that—because of constant
returns to scale—you can always double profits by doubling the amount of
capital and labor used. Below we will see that the equilibrium level of the
rental rate and hours are such that equilibrium profits are zero and that 1.54a
and 1.54b give the same capital to hours ratio.

Constant returns to scale implies that the optimal size of the firm is not
determined. That is, although in equilibrium the ratio k̃jt /h̃

j
t is determined, the

actual levels of k̃jt and h̃jt may be different across different firms. But firm size
does not change any of the aggregate properties of the model. So without loss
of generality we can pretend that there is one aggregate firm with

k̃t =
∑
j

k̃jt and h̃t =
∑
j

h̃jt . (1.55)

For this aggregate firm, the capital labor ration would be equal to k̃t/h̃t = k̃jt /h̃
j
t

∀j. Thus, k̃t and h̃t are the aggregate demand for capital and labor. It is easy
to see that 1.54a and 1.54b hold for the aggregate capital stock, k̃t, and the
aggregate number of hours worked, h̃t. First rewrite 1.54a and 1.54b as follows:

k
j

t =

(
rt
αθt

)1/(α−1)

h
j

t (1.56a)

h
j

t =

(
rt

(1− α)θt

)−1/α
k
j

t (1.56b)

It is clear that 1.56a and 1.56b can easily be aggregated since all firms face
the same prices. Thus,

k̃t =

(
rt
αθt

)1/(α−1)

h̃t (1.57a)

h̃t =

(
r

(1− α)θ

)−1/α
k̃t (1.57b)
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which implies that

αθt

(
k̃t

h̃t

)α−1
= rt (1.58a)

(1− α)θt

(
k̃t

h̃t

)α
= wt (1.58b)

We will now analyze the consumer problem. We assume that there are a
large number of consumers who also take prices as given. In particular, the
problem of the ith consumer who can supply labor each period at rate wt and
rent capital at rate rt is given by

max{cit+j ,hit+j ,kit+1+j}∞j=0

E
[∑∞

j=0 β
ju(cit+j , 1− hit+j)|It

]
s.t. cit+j + kit+1+j ≤ rtkit+j + wth

i
t+j + (1− δ)kit+j

kit+1+j ≥ 0
kt predetermined

(1.59)

The transversality and first-order conditions for this optimization problem
are equal to

∂L(·)
∂cit

= 0 :
∂u(cit,1−h

i
t)

∂cit
= λit

∂L(·)
∂hit

= 0 : λitwt = −∂u(c
i
t,1−h

i
t)

∂hit
∂L(·)
∂kit+1

= 0 : −λit + βE
{
λit+1 [rt+1 + (1− δ)]

}
= 0

∂L(·)
∂λit

= 0 : cit + kit+1 = θt
(
kit
)α (

hit
)1−α

+ (1− δ)kit
limJ→∞ βJE

[
λit+Jk

i
t+1+J | It

]
= 0

(1.60a)

The per capita (or aggregate) choice variables corresponding to the individ-
ual choices are defined by13

c̄t =
∑I
i=1 c

i
t/I

k̄t+1 =
∑I
i=1 k

i
t+1/I

h̄t =
∑I
i=1 h

i
t/I

(1.61)

From now on I drop the i superscript because it should be clear whether we are
talking about an individual level variable or a per capita variable.

We are now ready to define a competitive equilibrium.

Definition (competitive equilibrium): A competitive equilibrium con-
sists of a consumption function, c(kt, k̄t, θt), a labor supply function, h(kt, k̄t, θt),

13If we have a unit mass of agents then the per capita values of (for example) hours is

defined as h̄t =
∫ 1
0 h

idi. In this case the representative firm would have to hire an infinite
number of workers (and capital) and it would make more sense to assume that there is not
one but also a unit mass of firms in which case the equilibrium condition specifies that the
per capita supply of capital is equal to the per capita demand of capital.
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a capital supply function, k+1(kt, k̄t, θt), an aggregate per capita consumption
function, c̄(k̄t, θt), aggregate per capita capital supply function, k̄+1(k̄t, θt), ag-
gregate per capita labor supply function, h̄(k̄t, θt), an aggregate capital demand
function k̃(k̄t, θt), an aggregate labor demand function h̃(k̄t, θt), a wage func-
tion, w(k̄t, θt), and a rental rate, r(k̄t, θt), that

• solve the household’s optimization problem,

• solve the firm’s optimization problem,

• satisfy the equilibrium conditions

k̃(k̄t, θt) = Ik̄(k̄t, θt) and h̃(k̄t, θt) = Ih̄(k̄t, θt)

and the aggregate budget constraint:

c̄(k̄t, θt) + k̄+1(k̄t, θt) = θk̄αt h̄(k̄t, θt)
1−α + (1− δ)k̄t.

• are consistent with each other, that is,

– c̄
(
k̄t, θt

)
= c(k̄t, k̄t, θt),

– k̄+1

(
k̄t, θt

)
= k+1(k̄t, k̄t, θt), and

– h̄
(
k̄t, θt

)
= h(k̄t, k̄t, θt)∀k̄t,∀θt

Consistency The last requirement is probably the hardest to understand. It
implies the aggregation condition 1.61 for our representative agent framework,
but is in general a bit weaker. We will use this framework to study the case in
which everybody is identical.14 If everybody is identical then it must be true
that for each agent the individual capital stock, kit, is equal to k̄t and everybody
will choose c(k̄t, k̄t, θt). Using the explicit definition of c̄t given in 1.61, we get
that c̄t = c(k̄t, k̄t, θt), which is exactly the consistency requirement. The beauty
of this more general setup is that—even though everybody is the same—we can
still answer the question how one individual agent’s decision is going to change
if we change his individual capital stock but leave per capita capital the same.15

Note that both the individual capital stock, k, and the per capita, k̄, are
arguments of the agent’s individual decision rules. Why would an agent care
about the aggregate capital stock? Let’s think what an individual cares about
in period t. Clearly he cares about kt as well as current and future wages and
rental rates. It seems there is no reason why he would care about the capital
stock of other agents in the economy.

So the question arises whether it would make sense to make wages and rental
rates arguments of the policy functions? The first problem you will encounter

14Although agents are of the same type they could still be different because of initial con-
ditions, that is, different initial capital stocks but those differences would gradually disappear
over time.

15That is, as long as their mass is zero I can make some agents different from the rest of
the economy without changing anything.
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is that they are not predetermined variables. The second (related) problem is
that we wouldn’t know how many lags of wages and rental rates to include since
we don’t know what order Markov process these prices are.16 Now let’s think
whether there are predetermined variables that affect current wages and rental
rates and/or have predictive power for future values of these prices. Those are
the current productivity level θ and the capital stocks of the other agents. But
since everybody is the same in this economy the rest of the economy is described
completely by the per capita (or the aggregate) capital stock.17

But if everybody is the same, then we also know that the capital stock of
the agent we are considering, k, must be equal to the per capita capital stock,
k̄. And in fact we often exploit this property. Nevertheless, it is important to
realize that you cannot impose on the individual problem that kt will always
be equal to k̄t. In equilibrium, prices are such that the individual, who has the
freedom to do something different than the other agents in the economy, does
exactly what everybody else does. Moreover, the researcher may want to know
how one individual’s behavior changes if his individual capital stock increases
but the aggregate capital stock (that is the capital holdings of the other agents
in the economy) does not.

By comparing the first-order conditions of the social planner’s problem with
those of the competitive equilibrium it is clear that there is a choice for the wage
and the rental rate such the equations for the competitive equilibrium coincide
with those of the social planner. In particular, let the wage rate be equal to
the marginal product of labor and let the rental rate be equal to the marginal
product of capital. In this model, the social planner’s problem can, thus, be
obtained in a competitive equilibrium. There are many models for which the
allocations of the social planner’s solution are not equal to those obtained in
the competitive equilibrium or only under special circumstances. In the next
chapter we will encounter such examples.

Analytical example Above we showed that if agents had log utility (for
consumption and leisure) and if capital depreciates fully (a not so realistic as-
sumption) that there is an analytical solution to the social planner’s version of
the model. There is also an analytical solution to the competitive equilibrium.
It is given below. It is a good exercise to check yourself.

Individual policy rules

16The productivity process being a first-order Markov process does in general not imply
that endogenous variable in the model are first-order Markov processes.

17If agents start out with different capital stocks, the agents’ capital stocks will converge
since in this economy the initial condition only has a temporary effect.

22



h(kt, k̄t, θt) = h =
1− α

B(1− αβ) + (1− α)
(1.62a)

c(kt, k̄t, θt) = (1− αβ)θtk̄
α−1
t

(
1− α

B(1− αβ) + (1− α)

)1−α

kt (1.62b)

k+1(kt, k̄t, θt) = αβθtk̄
α−1
t

(
1− α

B(1− αβ) + (1− α)

)1−α

kt (1.62c)

Aggregate policy rules

h̄(k̄t, θt) = h =
1− α

B(1− αβ) + (1− α)
(1.63a)

c̄(k̄t, θt) = (1− αβ)θtk̄
α
t

(
1− α

B(1− αβ) + (1− α)

)1−α

(1.63b)

k̄+1(k̄t, θt) = αβθtk̄
α
t

(
1− α

B(1− αβ) + (1− α)

)1−α

(1.63c)

k̃t = Ik̄t (1.64)

h̃t =
I(1− α)

B(1− αβ) + (1− α)
(1.65)

Prices

rt = αθt
(
Ik̄t
)α−1( I(1− α)

B(1− αβ) + (1− α)

)1−α

(1.66a)

wt = (1− α)θt
(
Ik̄t
)α( I(1− α)

B(1− αβ) + (1− α)

)−α
(1.66b)

1.5.3 Complete Markets and the Representative Agent
Assumption

The third step of what we try to accomplish in this section is to show that
working with a representative consumer might not be as silly as it looks at
first. To simplify the discussion, we focus on an endowment economy where
all agents have identical power utility functions and face an stochastic process
that generates random draws of the individual endowment shock yit. These
laws of motions can differ across agents. Although yit could have a common
component we assume that it also has an important idiosyncratic component.
Therefore, even if all agents face the same law of motion, realizations of shocks
will differ across agents. We will assume that the financial markets are complete.
To explain the idea behind complete markets assume that given the information
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available in period t there are J states of nature that can occur in period t+1.18

A contingent claim is an asset that delivers one unit in state jt+1 ∈ J . Let the
price of this asset be qjt . Asset markets are said to be complete if all J contingent
claims can be traded. In that case you can insure yourself against any random
event. Let j∗ be the current state. The recursive formulation of agents ith

maximization problem is given by

max
ci,b1,i+1,··· ,b

J,i
+1

(
ci
)1−γ

1− γ
+ βEv(b1,i+1, · · · , b

J,i
+1)

s.t.ci +

J∑
j=1

qjbj,i+1 = yi +

J∑
j=1

I(j∗)bj,i

bj,i+1 > b < 0

where bj,i+1 is the amount of contingent claims for state j that agent i has bought
and I(j∗) is an indicator function that is equal to 1 if j = j∗ and 0 otherwise.
Contingent claims are in zero net supply so that the sum of bj,i+1 across agents
is equal to zero. Note that we have assumed a short-sale constraint on agent to
prevent Ponzi schemes. If we assume that this constraint is not binding then,
the first-order conditions for this problem are the budget constraint and the
following Euler equations:

qj
(
ci
)−γ

= β
(
cj,i+1

)−γ
prob(j) ∀j (1.67)

This can be written as follows:

ci =

(
βprob(j)

qj

)−1/γ
cj,i+1 ∀j or (1.68)

C =

(
βprob(j)

qj

)−1/γ
Cj+1 ∀j, (1.69)

where C is aggregate consumption in the current period and Cj+1 is aggregate
consumption next period when state j occurs. Note that 1.69 can be written as

qj (C)
−γ

= β
(
Cj+1

)−γ
prob(j) ∀j (1.70)

When we use the equilibrium condition that contingent claims are in zero net
supply, we get that aggregate consumption equals aggregate income and

qj (Y )
−γ

= β
(
Y j+1

)−γ
prob(j) ∀j (1.71)

18To simplify the notation, it is assumed that the number of states do not depend on t.
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But these also would be the equilibrium equations for the maximization
problem for the following representative agent

max
C,B1

+1,··· ,B
J
+1

(C)
1−γ

1− γ
+ βEv(B1

+1, · · · , B
J
+1)

s.t.Ci +

J∑
j=1

qjBj+1 = Y +

J∑
j=1

I(j∗)Bj

Bj+1 > b < 0

You, thus, can get the same asset prices with the representative agent economy
as with the economy with heterogeneous agents.

That aggregation is possible is surprising to many economists, especially
econometricians. For example, we know that aggregation of two AR(1) processes
does not give you another AR(1) process unless the autoregressive coefficient is
the same for the two processes. But in this example, aggregate consumption is
not just the sum of some exogenously specified consumption processes. Key is
that all agents adjust their marginal rates of substitution such that they equal
market prices and since all agents face the same prices they will have the same
marginal rate of substitution.

One misperception of representative agent models is that they are unrealistic
because there is no trade in equilibrium. This is of course a ridiculous statement
because the representative agent model is obtained by assuming that trade in
all contingent assets takes place. For example, this assumes that agents can
insure against idiosyncratic shocks. A more sensible criticism would be that
representative agent models assume that there is too much trade since in reality
many types of contingent claims are not being traded because of moral hazard
or adverse selection problems.

1.6 Growth in the standard neoclassical model

The models discussed so far assumed that the productivity process was station-
ary. Consequently, the generated series such as output and consumption are
stationary too. The observed series, however, are growing. The growth litera-
ture tries to answer the question why there is growth. Here we address much
simpler questions. The first question is whether we can impose restrictions on
the model so that the growth properties of the endogenous variables correspond
to what we observe. This question we answer using a steady state version of
the model. The second question is whether we can transform the model so that
we can analyze stationary deviations from a growth path.

1.6.1 Properties of balanced growth

We say that the model satisfies balanced growth if
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1. There are no trends in the capital and labor shares, that is, in rtkt/yt and
wtht/yt,

2. The rental rate has no trend and the wage rate grows at the same rate as
output, and

3. yt/ht and kt/ht grow at a roughly constant rate.

We will now show how the neoclassical growth model can generate these
facts. An essential assumption is that there is labor augmenting growth. That
is, the production function is written as

yt = f̃t(kt, ht) = f(kt, (1 + γ)tht), (1.72)

where (exogenous) technological growth is captured by (1 + γ)t. Note that f̃
does and f does not have a time subscript. Note that this assumption is clearly
satisfied if the production function is given by

yt = kαt
(
(1 + γ)tht

)1−α
. (1.73)

We focus on solutions that are of the following form

xt = x0(1 + gx)t (1.74)

for xt equal to yt, ct, kt, it, and ht. Now we will check whether the model
imposes restrictions on the growth rates of the variables. From

kt+1 = (1− δ)kt + it (1.75)

we get that gk = gi. From
yt = ct + it (1.76)

we get that gy = gc = gi.
19 Constant returns to scale gives

yt = f(kt, (1 + γ)tht) = (1 + γ)thtf

(
kt

(1 + γ)tht
, 1

)
(1.77)

or
yt

(1 + γ)tht
= f

(
kt

(1 + γ)tht
, 1

)
. (1.78)

We know that yt/((1 + γ)tht) and kt/((1 + γ)tht) have equal growth rates. But
this is only consistent with diminishing returns of f(·, 1) if that growth rate is
equal to zero. Thus, gy = gk = γ + gh.

Now suppose that the utility function can be written as

u(ct, 1− ht) =
c1−ηt v(1− ht)− 1

1− η
. (1.79)

19Note that we are looking for a solution in which growth rates are constant. That is, if
xt, yt, and zt have constant growth rates and zt = xt + yt then it must be the case that the
growth rates are equal to each other.
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The first-order condition for leisure is given by

c1−ηt

1− η
∂v(1− ht)

∂ht
+ c−ηt v(1− ht)(1 + γ)tf2(kt, (1 + γ)tht) = 0. (1.80)

If we assume that the production function is homogeneous of degree 1 then the
partial derivatives are homogenous of degree 0, thus

1

1− η
∂v(1− ht)

∂ht
+ c−1t v(1− ht)(1 + γ)tf2

(
kt

(1 + γ)t
, 1

)
= 0. (1.81)

From the discussion above we know that kt/(1 + γ)t is constant. Thus, this
equation is consistent with gc = γ and gh = 0. Combining this with the results
obtained above we get that gy = gi = gk = γ. The marginal product of capital

rt = f1(kt, (1 + γ)tht) = f1

(
kt

(1 + γ)t
, 1

)
(1.82)

is constant so that the capital share rtkt/yt is constant as well. The marginal
product of labor

wt = (1 + γ)tf2

(
kt

(1 + γ)t
, 1

)
(1.83)

grows at rate γ so that the wage share wtht/yt is constant as well.

1.6.2 Stationarity-inducing transformation

We now show how we can transform the model into one with only stationary
variables. The orginal problem is given by

max
{ct,ht,kt+1}∞t=1

E1

∞∑
t=1

βt−1
c1−ηt v(1− ht)− 1

1− η

s.t. ct + kt+1 ≤ kαt (θtht)
1−α + (1− δ)kt

kt+1 ≥ 0, k1 = k

We will now describe transformations of the model so that we come up with a
system of equations for stationary variables for different types of processes for
θt. In particular, θt could be a trend-stationary process, i.e.,

θt = (1 + gθ)
t, (1.84)

and θt could be difference-stationary, i.e.,

ln θt = ln θt−1 + ut, (1.85)

where ut is a stationary process. But in fact all steps performed here are legiti-
mate if θt is a stationary process.The first-order conditions for this problem are
given by

λt = c−ηt v(1− ht) (1.86)
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λt = Et

[
βλt+1

(
αθ1−αt+1

(
kt+1

ht+1

)α−1
+ (1− δ)

)]
(1.87)

c1−ηt v′(1− ht)
1− η

= λt(1− α)θ1−αt kαt h
−α
t (1.88)

The first step of the transformation is to define the following variables

c̃t = ct/θt, (1.89)

k̃t = kt/θt, (1.90)

h̃t = ht, (1.91)

λ̃t = λt/θ
−η
t (1.92)

Using these, we can rewrite the first-order conditions and the budget constraint
as

λ̃t = c̃−ηt v(1− h̃t) (1.93)

λ̃t = Et

βλ̃t+1

(
θt+1

θt

)−ηα( k̃t+1

ht+1

)α−1
+ (1− δ)

 (1.94)

c̃1−ηt v′(1− ht)
1− η

= λ̃t(1− α)k̃αt h
−α
t (1.95)

c̃t +

(
θt+1

θt

)
k̃t+1 ≤ k̃αt h̃1−αt + (1− δ)k̃t (1.96)

Note that
(
θt+1

θt

)
k̃t+1 is not a stochastic variable.

Consider the case in which (the log of) θt is a random walk and the growth
rate of θt is, thus, an i.i.d. random variable. In this case the only state variable
of the model is the transformed capital stock, k̃t = kt/θt. It may be tricky to
understand this by looking at the equations but it is fairly intuitive. Suppose
I start my economy with k1 = 100 and θ1 = 1. Now, I consider an alternative
economy in which k1 = 200 and θ1 = 2. The second economy is simply a
scaled up verson of the first. So scaled decisions should be the same in both
economies and they only depend on k̃t. The random walk property is important.
If productivity growth is serially correlated you want to include past growth
rates as a state variable.

The property that the only state variable is scaled capital also depends on
the production function having constant returns to scale and growth being labor
augmenting.

1.7 Exercises

Exercise 1.1: Consider again the sequence problem given in 1.1 but suppose
investments made in period t will become productive only in period t+2. That
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is the budget constraint is given by

ct + kt+1 = f(kt−1) + (1− δ)kt−1.

Thus in period t end of period t+ 1 capital kt+1 is chosen and in period t both
kt−1 and kt are given. Write down the first-order conditions for this problem
using the Lagrangian for the sequence problem and the Bellman Equation.

Exercise 1.2: Consider again the sequence problem given in 1.1 but sup-
pose that the current-period utility function depends on both current period con-
sumption, ct, and last period’s consumption, ct−1. Write down the first-order
conditions for this problem using the Lagrangian for the sequence problem and
the Bellman Equation.
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