
Occasionally Binding Constraints using
Perturbation Techniques: Exogenous &

Endogenous Regime Switching

Wouter J. Den Haan

1 / 59

Regular linear methods

I Advantages and disadvantages of linearized methods
I Advantages: Fast methods that can deal with a (very)

large state space. Models can be estimated.
I Disadvantages: Uses local approximations, so accuracy

only guaranteed around steady state. Certainty
equivalence, so no precautionary savings. Regular
perturbation cannot deal with inequality constraints
unless they always bind.

2 / 59

Constraints considered here

I Regime switching, that is, exogenous switching
between regime when constraint binds and regime when
it does not bind. Quite a few models, including ZLB
models, fall in this category. This part of the slides is
based on work by Pontus Rendahl.

I OccBin: The approach of Guerrieri and Iacoviello, which
allows for some endogeneity.

3 / 59

Overview of Pontus’ approach

The underlying idea is simple enough.
I Consider a two state version.
I You will have one linear system in each state. Pontus

uses a clever way to obtain these. See Pontus (2017).
I But with some probability you will, in the next period,

jump to the other state (and vice versa).
I The fact that you may jump will influence what the linear

system looks like in each state and will capture
nonlinear aspect of the model.

But let’s start with some basic tips and tricks about linear(ized)
systems.

4 / 59

Overview of Pontus’ approach

Before dealing with the occasionally binding constraints, we
first
I Describe a simple method to find linear approximation

around the steady state (without using Dynare). This is
“DIY linearization”.

I Extend this procedure to find linear approximations
around different points.

With these tools in place, we will be ready to deal with
occasionally binding constraints.

5 / 59

DIY Linearization with Time Iteration
I Without occasionally binding constraints, most models

can be written in the following way,

Et [F(xt ,xt+1,xt+2)] = 0

I Where x is a vector of endogenous and exogenous
(possibly stochastic) variables

I The non-stochastic steady state, x∗, satisfies

F(x∗,x∗,x∗) = 0

I In a standard neoclassical growth model this amounts to
a steady state capital stock, k ∗, such that

1 = β(1 + f ′(k ∗)−δ)

6 / 59

DIY Linearization with Time Iteration

I Linearisation techniques are very simple.
I Take a first order Taylor expansion of

Et [F(xt ,xt+1,xt+2)] = 0

around xt = xt+1 = xt+2 = x∗

I and we get

F(x∗,x∗,x∗) + Jxt (xt −x∗) + Jxt+1(Et [xt+1]−x∗)
+ Jxt+2(Et [xt+2]−x∗) = 0

7 / 59

DIY Linearization with Time Iteration

I Or simply

Jxt (xt −x∗) + Jxt+1(Et [xt+1]−x∗) + Jxt+2(Et [xt+2]−x∗) = 0

where Jxt is the Jacobian of F(xt ,xt+1,xt+2) with respect
to xt evaluated at xt = xt+1 = xt+2 = x∗.

I The convenient part of this is that uncertainty vanishes,
and we can focus on expected variables instead
(certainty equivalence).

8 / 59

DIY Linearization with Time Iteration

This is written as

Aut−1 + But + Cut+1 = 0

with xt −x∗t = ut−1

I Where ut−1 is a vector of predetermined variables, ut is a
vector of choice variables, and ut+1 a vector of forward
looking variables.

I Note that we have switched to “Dynare” notation

9 / 59

DIY Linearization with Time Iteration

Why has the expectations operator, Et disappeared?
I Consider the standard RBC model with stochastic

productivity, zt , which follows an AR(1)
I The system of equations contains zt and zt+1.
I If we use the AR(1) assumption, then the system of

equations contains zt−1, zt , and the innovation εt+1. The
latter “disappears” because of the linearization.

10 / 59

DIY Linearization with Time Iteration

Aut−1 + But + Cut+1 = 0

I The great thing about this is that systems like these are
1. Arbitrarily general (can be of very high dimensions)
2. Dead-easy to solve
3. Blazing fast
4. Uniqueness/stability and so on can be checked by the

Blanchard and Kahn’s (1980) conditions.

I It is always smart to solve models using linearisation
techniques first to check that you get something sensible.

11 / 59

DIY Linearization with Time Iteration

Aut−1 + But + Cut+1 = 0

I So how do we solve them?
I There are many ways, but Pontus’ first insight is that a

very easy way is Time Iteration. Although, this will require
calculating an inverse, this matrix inversion is less
problematic than the one of regular perturbation, so you
do not have to worry about things like Schur
decompositions.

I We are looking for a linear solution ut = Fut−1

1. Here ut−1 is the state, and ut the “choice variable”.
2. F is a matrix of the same dimensionality as the Jacobians

above.
12 / 59

DIY Linearization with Time Iteration

Aut−1 + But + Cut+1 = 0

I The principle of time iteration: Take as given how you act
tomorrow, then solve for the optimal choice today.

I If the initial guess for F is called F0, then using this for
tomorrow’s behavior implies

Aut−1 + But + CF0ut = 0.

from this, we get an update for F , that is an updated
relationship between ut and ut−1.

13 / 59

DIY Linearization with Time Iteration

I More generally, for some n ≥ 0 we find ut as

Aut−1 + But + CFnut = 0

and update Fn to Fn+1 until convergence.

I Solving for ut

ut = (B + CFn)−1(−A)︸ ︷︷ ︸
Fn+1

ut−1

14 / 59

DIY Linearization with Time Iteration

I More generally, for some n ≥ 0 we find ut as

Aut−1 + But + CFnut = 0

and update Fn to Fn+1 until convergence.
I Solving for ut

ut = (B + CFn)−1(−A)︸ ︷︷ ︸
Fn+1

ut−1

14 / 59

DIY Linearization with Time Iteration

I Thus iterate on

Fn+1 = (B + CFn)−1(−A),

until

‖A + BFn+1 + CF2
n+1‖ ≈ 0

I Since this goes fast, you can/should use a tight
convergence criterion, like 1e(-12).

15 / 59

DIY Linearization with Time Iteration

I Is the solution stable?
I If the eigenvalues of F are less than one in absolute

value it is.
I Are there other stable solutions too?
I Try

ut−1 = Sut

and iterate on

Sn+1 = (B + ASn)−1(−C),

I And if the eigenvalues of S are less than one in absolute
value, then. there are no other stable solutions.

16 / 59

Linearization around an arbitrary point

I Before introducing occasionally binding constraint, we
generalize the procedure to allow expansion around an
arbitrary point.

I The model is again

Et [F(xt ,xt+1,xt+2)] = 0

I Now suppose we take a first-order Taylor expansion
around x̄ , x∗, and that

F(x̄, x̄, x̄) = D

17 / 59

Linearization around an arbitrary point

I We then get

D + Jxt (xt − x̄) + Jxt+1(Etxt+1− x̄)

+ Jxt+2(Etxt+2− x̄) = 0

I where Jxt is the Jacobian of F(xt ,xt+1,xt+2) with respect
to xt evaluated at xt = xt+1 = xt+2 = x̄.

18 / 59

Linearization around an arbitrary point

I Or simply

Aut−1 + But + Cut+1 + D = 0

with xt − x̄ = ut−1

19 / 59

Linearization around an arbitrary point

I Now, our solution is not of the type

ut = Fut−1

but instead

ut = E + Fut−1

20 / 59

Linearization around an arbitrary point

I With time iteration we are searching for a ut such that

Aut−1 + But + C(En + Fnut) + D = 0

I Thus,

ut = (B + CFn)−1(−(D + CEn))︸ ︷︷ ︸
En+1

+(B + CFn)−1(−A︸ ︷︷ ︸
Fn+1

)ut−1

I Notice that Fn can be updated without information of En
or En+1.

21 / 59

Linearization around an arbitrary point
I Therefore we iterate as usual

Fn+1 = (B + CFn)−1(−A)

I Until

‖A + BFn+1 + CF2
n+1‖ ≈ 0

I And once Fn has converged, we find E as the solution to

E = (B + CF)−1(−(D + CE))

or simply

E = (B + C + CF)−1(−D)

22 / 59

Regime switching systems
I Previously we looked at models that could be written in

the following way,

Et [F(xt ,xt+1,xt+2)] = 0

I Where x was a vector of endogenous and exogenous
(possibly stochastic) variables

I Now we are going to look at models that are given by

Et [F(xt ,zt ;xt+1,zt+1;xt+2)] = 0

I Where zt is a discrete stochastic variable with some
transition matrix T .

I (The vector xt can still contain other stochastic variables
if you’d like, but wlog, it is assumed here that it doesn’t)

23 / 59

Regime switching systems

I Suppose zt can take on values in Z = {z1,z2, . . . ,zI}.
I We will not linearize with respect to z but only with

respect to x.
I That is, for each z i ∈ Z we will linearize the system

around x̄, such that

EjF(x̄,z i; x̄,z j; x̄) = D i

I In fact, we could linearize around a different x̄ for each z i

if we would like to, but let’s keep things simple.

24 / 59

Regime switching systems

I We indicate this period’s state with superscript i and
next-period’s state with superscript j.

I The optimal choice of xt+1 will depend on z i . Thus xt+2
will in turn depend on z j (the exogenous state
“tomorrow”).

I Next period’s state is not known, but it has a discrete
distribution. So think of E as a sum and note that we
have one realization of xt+2 for each j.

25 / 59

Regime switching systems

I Linearization of the system of equations gives

D i + Ji
xt

(xt − x̄) + Ji
xt+1

(xt+1− x̄)

+Ej[J
j
xt+2

(xt+2(j)− x̄)|i] = 0,

I where Ji
xt

is the Jacobian of Ej[F(x̄,z i; x̄,z j; x̄)] with
respect to the first argument, Ji

xt+1
is the Jacobian with

respect to the third argument, and Jj
xt+2

is the Jacobian
with respect to xt+2(j).

26 / 59

Regime switching systems

I We can again write this as

A iut−1(i) + B iut(i) +
I∑

j=1

C jut+1(j) + D i = 0, for i = 1, . . . , I

I Looks complicated? Let’s make it more concrete.

27 / 59

Regime switching systems

I We can again write this as

A iut−1(i) + B iut(i) +
I∑

j=1

C jut+1(j) + D i = 0, for i = 1, . . . , I

I Looks complicated? Let’s make it more concrete.

27 / 59

Consumption/Savings problem with
unemployment

Euler equations for employed and unemployed agent are

0 = −u′(at(1 + r) + w −at+1)

+β(1 + r)[Te,eu′(at+1(1 + r) + w −at+2(e))

+ Te,uu′(at+1(1 + r)−at+2(u))]

0 = −u′(at(1 + r)−at+1)

+β(1 + r)[Tu,eu′(at+1(1 + r) + w −at+2(e))

+ Tu,uu′(at+1(1 + r)−at+2(u))]

I Can take Jacobian w.r.t at , at+1 and at+2(i), i = e,u, and
evaluate around ā

28 / 59

Consumption/Savings problem with
unemployment

The linearized regime switching system is given by

Aeut−1(e) + Beut(e) + Ce,eut+1(e) + Ce,uut+1(u) + De = 0
Auut−1(u) + Buut(u) + Cu,eut+1(e) + Cu,uut+1(u) + Du = 0

I We would look for solutions ut = E i + F iut−1, i = e,u.

29 / 59

Regime switching systems

I Let’s go back to the general formulation:

A iut−1(i) + B iut(i) +
I∑

j=1

C jut+1(j) + D i = 0, for i = 1, . . . , I

I We are looking for I policy functions of the type

ut(i) = E i + F iut−1(i), i = 1,2, . . . , I

30 / 59

Regime switching systems

I Time iteration means to find ut as the solution to

A iut−1(i) + B iut(i) +
I∑

j=1

C j(E j
n + F j

nut(i)) + D i = 0,

for i = 1, . . . , I

and update the coefficients E i
n+1 and F i

n+1 accordingly.

31 / 59

Regime switching systems
I Therefore we iterate on the equations

E i
n+1 = (B i +

I∑
j=1

C jF j
n)−1(−(D +

I∑
j=1

C jE j
n))

F i
n+1 = (B i +

I∑
j=1

C jF j
n)−1(−A)

for i = 1,2, . . . , I
I Until

‖(A + BF i
n+1 +

I∑
j=1

C jF j
n+1F i

n+1)

+1[BE i
n+1 +

I∑
j=1

C j(E j
n+1 + F j

n+1E i
n+1)]‖ ≈ 0

32 / 59

Time path conditional on state

0 20 40 60
-30

-25

-20

-15

-10

-5

0

0 20 40 60
-3

-2.5

-2

-1.5

-1

-0.5

0

0 20 40 60
0

1

2

3

4

5

0 20 40 60
-0.4

-0.3

-0.2

-0.1

0

0 20 40 60
-1.5

-1

-0.5

0

33 / 59

Regime switching systems

I Looks ok, but it’s not pretty.
I Plot all possible sample paths? That would be 502. Or

more generally if T is the length of the impulse response
and N is the number of elements in Z , then there are TN

possible paths.
I Popular alternative: Plot the expected paths.

I Quite good because this is what econometricians would
pick up if they had access to the data generated by the
model.

34 / 59

Impulse Responses (blue with G increase)

0 20 40 60
-30

-25

-20

-15

-10

-5

0

0 20 40 60
-3

-2.5

-2

-1.5

-1

-0.5

0

0 20 40 60
0

1

2

3

4

5

0 20 40 60
0

0.1

0.2

0.3

0.4

0 20 40 60
-1.5

-1

-0.5

0

0.5

0 20 40 60
0

0.5

1

1.5

2

2.5

3

35 / 59

Regime switching systems

I Better!
I How is this done?
I One possibility: calculate all TN paths, weigh them by

their respective probability of occurring, and sum.
I But with these sort of linear policy functions we can be

smarter than that.

36 / 59

Regime switching systems

I Denote the expected value of ut+s conditional on
information available at time t , and conditional on being
in state zt+s = zj as Et [ut+s |zt+s = zj].

I Because of the linearities of the policy functions, this can
be written as

Et [ut+s |zt+s = zj] =
I∑

i=1

Pr(zt+s−1 = zi |zt+s = zj)

× (E j + F jEt [ut+s−1|zt+s−1 = zi])

37 / 59

Regime switching systems

Et [ut+s |zt+s = zj] =
I∑

i=1

Pr(zt+s−1 = zi |zt+s = zj)

× (E j + F jEt [ut+s−1|zt+s−1 = zi])

I Bayes’ rule states that

P(A |B) = P(B |A)
P(A)

P(B)

38 / 59

Regime switching systems

Et [ut+s |zt+s = zj] =
I∑

i=1

Pr(zt+s−1 = zi |zt+s = zj)

× (E j + F jEt [ut+s−1|zt+s−1 = zi])

I Thus

Pr(zt+s−1 = zi |zt+s = zj) = Pr(zt+s = zj |zt+s−1 = zi)

×
Pr(zt+s−1 = zi)

Pr(zt+s = zj)

39 / 59

Regime switching systems

I If z follows transition matrix T , this can be written as

Pr(zt+s−1 = zi |zt+s = zj) = Pr(zt+s = zj |zt+s−1 = zi)

×
Pr(zt+s−1 = zi)

Pr(zt+s = zj)

= Tij
vt+s−1,i

vt+s,j

I Where Tij is the (i, j)th element of transition matrix T , and
vt+s,j is the jth element of the vector

vt+s = vt+s−1×T

for some initial vt .

40 / 59

Regime switching systems
I Thus our nasty equation

Et [ut+s |zt+s = zj] =
I∑

i=1

Pr(zt+s−1 = zi |zt+s = zj)

× (E j + F jEt [ut+s−1|zt+s−1 = zi])

turns into something more pleasant

Et [ut+s |zt+s = zj] =
I∑

i=1

Tij
vt+s−1,i

vt+s,j

× (E j + F jEt [ut+s−1|zt+s−1 = zi])

I And

Et [ut+s] =
I∑

j=1

vt+s,jEt [ut+s |zt+s = zj]

41 / 59

Regime switching systems

I To implement this procedure, we still need to answer the
following:

I What is the initial condition, ut−1?
I What is vt?

42 / 59

Regime switching systems
What is ut−1?
I This is somewhat arbitrary, but a good start is to assume

that the economy is at it’s long run expected value in
period t ; uss .

I Given a long-run distribution v, this is given by

uss =
I∑

j=1

uj,ssvj

I Where uj,ss solves

uj,ss =
I∑

i=1

Tij
vi

vj
× (E j + F jui,ss), j = 1, . . . , I

I We can either iterate to find uj,ss , or to set it up as a
linear system of equations.

43 / 59

Regime switching systems

I The nice thing about this starting value is that the
expected value

Et [ut+s] =
I∑

j=1

vt+s,jEt [ut+s |zt+s = zj]

will converge to uss as s goes to infinity.
I That is

lim
s→∞
Et [ut+s] = uss

44 / 59

Regime switching systems

What is vt?
I This is entirely up to you, and forms the basis of your

impulse response.
I Setting vt = [0,0,1,0,0, . . .] means that you know with

certainty that you are in state 3 in period t .

45 / 59

Occbin - Guerrieri & Iocoviello

I In some models, there is not an exogenous variable that
determines the relevant regime.

I Then we would need to determine endogenously in
which regime we are.

I Occbin makes some assumptions that seem strong (but
are shown not too affect accuracy too much in at least
some applications). See Guerrieri and Iacoviello (2015).

46 / 59

Equations of the 2 regimes

I Reference regime M1 when constraint is slack:
Linearized system can be expressed as

CtEt [ut+1] + But + Aut−1 + Hεt = 0 (1)

I Reference regime M2 when constraint binds: Linearized
system can be expressed as

C∗Et [ut+1] + B∗ut + A∗ut−1 + D∗+ H∗εt = 0 (2)

I The constant D reflects that u = 0 is not a steady state of
this equation.

47 / 59

Assumptions

I BK conditions hold in regime M1
I If εt = 0 for all future t , then the system would return to

M1 within a finite number of periods

48 / 59

Algorithm overview: M1

I Regime M1: the solution is equal to the regular first-order
perturbation solution. That is, the solution does not take
into account the possibility of hitting the constraint in the
future.

I Linearized system:

ut = Fut−1 + Gεt

I You only have to check whether the constraint is indeed
slack

49 / 59

Algorithm overview in regime M2

I Regime M2 in period t given ut−1, εt :
I Guess the value of T such that for τ ≥ T , we are in

regime M1 in perpetuity
I Here we assume that the system will be in M2 until then,

but the algorithm allows for some additional switching
between M1 & M2 until then.

I Verify whether this is correct.
I Update if necessary.

50 / 59

Verification procedure in regime M2

I Certainty equivalence is imposed, which means that
behavior in period t does not depend on variance of
shocks.

I Thus, to solve for behavior in period t we set

εt+j = 0 for j ≥ 1

I for t + T , we are in M1. Thus

uT = FuT−1 (3)

I If εt = 0 for all future t , then the system would return to
M1 within a finite number of periods

51 / 59

Verification procedure in regime M2

I Combining equation (3) with the M2 system of equation
(2) gives

C∗FuT−1 + B∗uT−1 + A∗uT−2 + D∗ = 0

I From this we can solve for the policy rule of XT−1 given
XT−2, just the way Pontus solved for linear policy rules
using time iteration. That is,

uT−1 = FT−1uT−1 + ET−1

I FT−1 = −(C∗F + B∗)−1A∗

I ET−1 = −(C∗F + B∗)−1D∗

52 / 59

Verification procedure in regime M2

I Combining this with the M2 set of equations 2 gives

C∗FT−1uT−2 + B∗uT−2 + A∗uT−3 + D∗= 0

I From this we can solve for the policy rule of uT−2 given
uT−3. That is,

uT−2 = FT−2uT−3 + ET−2

I FT−2 = −(C∗FT−1 + B∗)−1A∗

I ET−2 = −(C∗FT−1 + B∗)−1D∗

I Note that E and F are time-varying coefficients

53 / 59

Verification procedure in regime M2

I Continue until you get to t
I With these time-dependent policy rules, you can

generate a time path for Xt+j for j ≥ 1
I Now check whether the guess for T is indeed correct

54 / 59

Comparison of the two methods

Pontus’ regime switching model derives a linear
approximation that is consistent with the underlying model,
however, switching between the different regimes must be
driven fully by an exogenous random variable

55 / 59

Comparison of the two methods

OccBin allows for endogenous switching. However, the
derived policy rules are not 100% consistent with the
underlying model:
I The policy rules for the regime when the constraint is not

binding are not affected by the possibility that the
constraint identical to the model in which the constraint is
never binding, but in the true model they are.

I The policy rules for the regime when the constraint is
binding are based on the policy rules for the
unconstrained regime, which we know are not quite
correct.

56 / 59

Comparison of the two methods

OccBin allows for endogenous switching. However, the
derived policy rules are not 100% consistent with the
underlying model:
I So being at the constraint with OccBin is like an “MIT”

shock, that is, you get there completely unexpectedly and
then do not expect to be in that position ever again.

This may or may not be important quantitatively. In quite a few
examples it seems fine.

57 / 59

What else could you do?

1. Occasionally binding constraints are typically not a
complication for projection methods. When policy
functions have kinks, then linear splines are likely to be a
better choice (although one could use polynomials when
the constraint is not binding; when the constraint is
binding then the policy rule follows directly from the
constraint)

2. Holden (2016) develops a more general procedure that
improves on Occbin by having some guaranteed
convergence properties (if a solution exist) and some
extensions for higher-order perturbation.

58 / 59

References

I Holden, T.D., 2016, Computation of solutions to Dynamic
Models with Occastionally Binding Constraints, available
at http://www.tholden.org/papers/

I Guerrieri, L. and M. Iacoviello, 2015, Occbin: A Toolkit for
Solving Dynamic MOdels with Occasionally Binding
Constriants Easily, Journal of Monetary Economics 70,
22-38.

I Rendahl, P., 2017, Linear Time Iteration, available at
https://sites.google.com/site/pontusrendahl/Research

59 / 59

http://www.tholden.org/papers/
https://sites.google.com/site/pontusrendahl/Research

	Introduction
	DIY linearization
	Regime Switching
	Occbin
	Comparison

