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Abstract

A random walk with drift is a good univariate representation of US GDP. This

paper shows, however, that US economic downturns have been associated with pre-

dictable short-term recoveries and with changes in long-term GDP forecasts that are

substantially smaller than the initial drop. To detect these predictable changes, it

is important to use a multivariate time series model. We discuss reasons why uni-

variate representations can miss key characteristics of the underlying variable such as

predictability, especially during recessions.
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1 Introduction

Accurate forecasts of future economic growth are very valuable, for example, because they

are needed for policymakers to decide on the appropriate stance of monetary and fiscal

policy. Good forecasts are also important for the private sector, for example, for investment

decisions or purchases of durable consumption goods. For these reasons, it is important

that such forecasts are done with utmost care; forecasts that are too pessimistic or too

buoyant could induce the wrong decisions and be quite harmful. Understanding what

lies ahead is especially important during recessions, which explains the strong interest to

understand what the short-term and long-term consequences of economic downturns are

for future output levels.

Campbell and Mankiw (1987) argued that:

“The data suggest that an unexpected change in real GDP of 1 percent

should change one’s forecast by over 1 percent over a long horizon.”

Thus, shocks to GNP are permanent. Moreover, it implies that reductions in real

activity are associated – if anything – with predictable deteriorations, not predictable

recoveries. More recently, this quote was repeated on Mankiw’s blog.1 Campbell and

Mankiw (1987) base their conclusion on estimated univariate ARMA models, that is,2

φ (L) ∆yt = a0 + θ (L) et, (1)

where yt is the log of real GDP and et is a serially uncorrelated shock. In this class of

time-series models, there is only one type of shock, that is, the response of output to

realizations of et is always the same, independent of why there is a shock to output.

The contribution of this paper is twofold. First, we document that the claim made in

Campbell and Mankiw (1987) is not very accurate. Using a simple multivariate time series

model, we show that US recessions were often (but not always) followed by predictable
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recoveries.3 Consistent with the results in Campbell and Mankiw (1987), these recoveries

were not predicted by univariate time-series models.

The second contribution of this paper is to put forward reasons why univariate time-

series models for GDP may lead to inaccurate forecasts. Key in our arguments is that

GDP is an aggregate of other random variables.

The first reason is that a univariate representation does not have the flexibility to incor-

porate shocks with different persistence levels. A striking illustration is given in Blanchard

et al. (2013). They construct an example in which the correct univariate specification of a

stochastic variable that is the sum of an integrated variable with predictable changes and

a stationary variable, also with predictable changes, is a random walk. That is, using only

information about the aggregate variable, the correct univariate representation indicates

that all changes are permanent, even though both innovations of the underlying system

imply predictable further changes. We derive a more general version of this result.

The key lesson is the following. Macroeconomic aggregates are likely to be the sum

of stationary and non-stationary variables. A correct univariate representation of such

a variable must indicate that it is non-stationary, which means that the impact of the

shock of the univariate representation necessarily has a permanent impact. We show that

similar distortions occur when a random variable is the sum of two stationary variables

with different persistence levels.

The second reason that univariate models may prove problematic is that the true

ARMA representation of an aggregate variable may be more complex than the most com-

plex ARMA process of each of its component series. This argument, pointed out by

Granger and Morris (1976) and Granger (1980), means that with a finite data sample it

might be difficult to identify the correct ARMA specification. This means that univari-

ate time series models for aggregate variables may generate misleading forecasts. In this

paper, we analyze how the under-parameterization of a univariate time series model can

lead to biased forecasts.
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We compare predictions of the univariate representation with those based on a VAR

of GDP’s expenditure components. It strengthens our argument that even such a simple

multivariate time series model generates quite different forecasts during recessions. This

finding is consistent with results from the forecasting literature that richer models can

outperform univarate time series models.4 Nevertheless, univariate time-series models

have a long history and remain important. Nelson (1972) documents that large-scale

macroeconometric models with many equations do not outperform forcasts made by simple

ARIMA models. Similarly, Edge and Gurkaynak (2010) and Edge et al. (2010) show that

forecasts made by DSGE models can be worse than a simple forecast of constant output

growth.5

In section 2, we provide some theoretical background and discuss reasons why uni-

variate representations may overestimate the long-run impact of economic downturns. In

section 3, we illustrate some key time-series properties of US GDP. In section 4, we com-

pare the precision of forecasts made by univariate and multivariate time-series models. In

section 5, we document what this meant for forecasts made during US post-war recessions.

In section 6, we show that multivariate representations also have advantages for predicting

UK GDP, but for quite different reasons than the ones outlined above. The last section

concludes.

2 Econometrics of univariate time-series models

In section 2.1, we illustrate why univariate time-series representations can give misleading

predictions even if they are correctly specified. In particular, it is possible that the variable

of interest, yt, is a random walk and (i) it is not necessarily true that all changes in this

variable have a permanent effect and (ii) the model’s predictions made during recessions

systematically overpredict the persistence of the downturn. In section 2.2, we give reasons

why it may be difficult to get a correctly specified univariate representation for aggregate

variables.
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2.1 Univariate representation: Missing information and bias

Consider the following data generating process (dgp) for yt:
6

yt ≡ xt + zt,

(1− ρL)xt = ex,t,

(1− ρL) (1− ρzL) zt = ez,t,

Et [ex,t+1] = Et [ez,t+1] = Et [ex,t+1ez,t+1] = 0, Et
[
e2x,t+1

]
= σ2x,Et

[
e2z,t+1

]
= σ2z ,

(2)

where Et [·] denotes the expectation conditional on current and lagged values of xt and

zt. The persistence of the effects of ex,t on xt is determined by the value of ρ and the

persistence of the effects of ez,t on zt is controlled by both ρ and ρz. We assume that

−1 < ρ < 1, (3)

−1 < ρz ≤ 1, (4)

ρz
ρ

> 1. (5)

We define ey,t such that the following holds:7

(1− ρzL) yt = ey,t, (6)

The unconditional autocovariance of ey,t and ey,t−j , E [ey,tey,t−j ], is given by

E [ey,tey,t−j ] =
ρj

1− ρ2
σ2z +

(
(ρ− ρz) ρj−1 +

(ρ− ρz) ρj

1− ρ2

)
σ2x. (7)

This implies that the autocovariances of ey,t are equal to zero if the following equation

holds:8

σ2z =
(ρz − ρ) (1− ρzρ)

ρ
σ2x. (8)
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If this equation is satisfied, then ey,t is serially uncorrelated, and the correct univariate

time-series specification of yt is an AR (1) with coefficient ρz.

In this univariate representation for yt, there is only one shock, ey,t, and the persistence

of the effects of this shock is solely determined by ρz. Thus, the value of ρ does not matter

at all! This is remarkable given that ρ affects the persistence of both fundamental shocks,

ex,t and ez,t.

To understand why the univariate representation misses key aspects of the underly-

ing system, consider the case considered in Blanchard et al. (2013) when ρz = 1. The

univariate representation is then given by

yt = yt−1 + ey,t. (9)

That is, ∆yt is white noise and yt is a random walk. Although yt is a random walk,

almost all changes in yt imply predictable further changes according to the underlying

multivariate dgp.9 In particular, if ∆yt < 0 because ex,t < 0, then there is a predictable

recovery in yt, since xt = ρxt−1 + ex,t and 0 < ρ < 1. If ∆yt < 0 because ez,t < 0, then

there is a predictable further deterioration, since ∆zt = ρ∆zt−1+ez,t and ρ > 0. If one only

observes that ∆yt < 0, then one has to weigh the two possible cases and in this example

the two opposing effects exactly offset each other, leading the forecaster to predict that

the level of output will remain the same.

Although the implications are most striking when ρz = 1, which is the case considered

in Blanchard et al. (2013), the analysis presented here makes clear that the univariate

representation of yt does not incorporate the role of ρ for any value of ρz such that

−1 < ρz 6 1.

The dgp considered in this section is special because the forecastability that is present

in the different components cancels out and disappears in the univariate representation.

It is true more generally, however, that important information is lost in the univariate

representation of the sum of variables.
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Is the predicted long-run impact correct on average? The previous discussion

showed that the univariate representation given in equation (6) clearly misses some aspects

of the underlying data generating process. Next, we turn to the question whether the

univariate representation generates (long-term) predictions that are on average correct.

To simplify the discussion, we focus on a particular version of the dgp given in equa-

tion (2). We assume that ρz = 1 and equation (8) is satisfied, so that the univariate

representation of yt is a random walk. Moreover, we set σx = σz = σ, which implies that

ρ = 0.381966 according to equation (8). Finally, we assume that ex,t and ez,t can take

only two values, namely −σ and +σ, both with equal probability. Note that the value of

yt remains unchanged if ex,t and ez,t have the opposite sign.

Although yt has a random-walk representation, it systematically overpredicts the long-

term consequences when output falls, i.e., during recessions, and it systematically under-

predicts long-term consequences when output increases.

Before showing this, we first consider the case when output remains the same, which

happens if ex,t and ez,t have the opposite sign. The (long-run) predictions based on the

random-walk specification remain the same, since yt remains the same. However, the true

long-run predictions are affected as follows:

limτ−→∞ Et [yt+τ ]− yt = +σ/ (1− ρ) if ez,t = +σ and ex,t = −σ and

limτ−→∞ Et [yt+τ ]− yt = −σ/ (1− ρ) if ez,t = −σ and ex,t = +σ.
(10)

Thus, when yt remains the same, then one fails to recognize that the long-run value of yt

has gone up half of the time and fails to recognize that this long-run value has gone down

the other half of the time. However, the forecasts are not systematically wrong.

Now consider the case in which output drops, which happens when ex,t = ez,t = −σ.

The drop in output is equal to −σx − σz = −2σ. The random-walk specification implies
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that the long-run impact is identical to the short-term impact, that is,

lim
τ−→∞

Êt
[
yft,t+τ

]
− yt = −2σ, (11)

where Êt [·] is the expectation according to the (correct) univariate representation. The

true long-run impact of the shock, however, is equal to

lim
τ−→∞

Et [yt+τ ]− yt = −σ/(1− ρ) = −1.618σ. (12)

That is, in a recession, the univariate representation systematically overpredicts the long-

run negative impact of the economic downturn. Similarly, the univariate representation

systematically overpredicts the long-run positive impact of an increase in yt. So the predic-

tions are not biased, but one clearly is too pessimistic during recessions and too optimistic

during booms if one would make predictions based on the random-walk specification.

In this stylized example in which ex,t and ez,t can take only two values, one could

drastically improve on the predictions of the univariate representation even if one could

not observe xt or zt, but knows the true dgp. The reason is that a drop in yt implies

that ex,t and ez,t are both negative and an increase implies that both shocks are positive.

The idea that the magnitude of the unexpected change in yt has information about the

importance of ex,t and ez,t is also true for more general specifications of ex,t and ez,t, as

long as one has information about the distribution of the two shocks. If one observes a

very large drop in yt, then it is typically the case that it is more likely that ex,t and ez,t

are both negative than that ex,t is positive and ez,t is so negative it more than offsets

the positive value of ex,t or vice versa. That is, the larger the economic downturn the

larger the probability that a certain fraction of this downturn is driven by the transitory

shock, that is, the larger the probability that a fraction of the drop in real activity will be

reversed.

7



2.2 Aggregated variables and correctly specifying their dgps

Aggregating ARMA processes. In this section, we highlight another problem with

working with aggregated variables. We illustrate that the correct ARMA representation

of an aggregate variable may very well be more complex than the most complex ARMA

process for each of the component series. Formally, if xt is an ARMA(px, qx) and zt is

an ARMA(pz, qz), then yt ≡ xt + zt is an ARMA(p, q) and p and q satisfy the following

condition:10

p ≤ px + pz and q ≤ max{qx + pz, qz + px}. (13)

These conditions give upper bounds for the ARMA representation of the sum, yt. Thus,

the ARMA representation of yt is not necessarily of a higher order than those of xt and

zt. In fact, in section 2.1 we gave an example in which an AR (1) variable and an AR (2)

variable add up to an AR (1) variable.11 But that example relies on specific parame-

ter restrictions. In practice, one should not rule out the possibility that the univariate

representation of a sum of several random variables could be quite complex. In fact,

Granger (1980) argues that an aggregate of many components—as is the case for typical

macroeconomic variables—may exhibit long memory.12

One might think that the solution to this dilemma is to use more complex ARMA

processes for aggregate variables. The problem is that the model has to be estimated with

a finite amount of data, consequently the values of p and q cannot be too high. But if the

values of p and/or q are too low, then the dgp could be misspecified.13

Simple example. We will now give a simple example, in which the predictions of a uni-

variate time-series model for an aggregated variable are quite bad if that time-series model

is not more complex than the most complex time-series representation of the components.
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Consider the following dgp:

yt ≡ xt + zt,

xt = ρxxt−1 + ex,t,

zt = ez,t,

Et [ex,t+1] = Et [ez,t+1] = 0,

Et
[
e2x,t+1

]
= σ2x,

Et
[
e2z,t+1

]
= σ2z ,

(14)

with −1 < ρx < 1. Thus, yt is the sum of two stationary random variables, an AR(1) and

white noise. Equation (14) implies that

(1− ρxL) yt = ex,t + (1− ρxL) ez,t. (15)

The first-order autocorrelation of the term on the right-hand side is not equal to zero

unless ρx = 0, but higher-order autocorrelation coefficients of this term are equal to zero.

Consequently, yt is an ARMA (1, 1). That is, there is a value for θ such that the following

is the correct univariate time-series representation of yt:

(1− ρxL) yt = (1 + θL) ey,t, (16)

where ey,t is serially uncorrelated. The value of θ is given by the following expression:14

θ =
ρx
(
−E [ex,tez,t]− E

[
e2z,t
])

E
[
e2y,t
] . (17)

The most complex component of yt is xt, which is an AR(1). So suppose that yt is

also modelled as an AR(1). That is,

yt = ρ̃yyt−1 + ẽy,t. (18)
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If we abstract from sampling uncertainty, we can pin down the value of ρ̃y using population

moments:

ρ̃y =
E [ytyt−1]

E
[
y2t
] =

(ρx + θ) (1 + ρxθ)

(1− ρ2x) + (ρx + θ)2
. (19)

We are interested in whether this AR(1) specification would tend to over- or underestimate

the long term effects of shocks by comparing |ρ̃y| with |ρx|. If |ρ̃y| > |ρx|, then the AR(1)

specification would tend to overstate the true degree of persistence. It is straightforward

to show that |ρ̃y| > |ρx| if and only if θρx > 0, that is, if ρx and θ have the same sign.15

Equation (17) implies that this happens if

− E [ex,tez,t]− E
[
e2z,t
]
> 0. (20)

This condition is satisfied if the covariance of ex,t and ez,t is sufficiently negative. Similarly,

|ρ̃y| < |ρx| if and only if ρx and θ have the opposite sign, which happens if

− E [ex,tez,t]− E
[
e2z,t
]
< 0. (21)

This condition would be satisfied if the two shocks are positively correlated.

To shed some light on the possible consequences of using an AR (1) as the law of

motion for yt, we consider the case when the two shocks have the following very simple

relationship:

ez,t = αex,t. (22)

Since ex,t and ez,t are perfectly correlated, there is only one type of shock and there is

a univariate time-series specification of yt that completely captures the dynamics of yt.

Now we investigate what the consequences of misspecifying the ARMA(1, 1) process as

an AR(1)—as an AR(1) is the most complex of the individual underlying time series

processes.

Figure 1 plots ρ̃y, i.e., the value of the coefficient of the AR (1) representation of yt,
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as a function of the true dominant root in the dgp of yt, i.e., ρx. The top panel considers

the case when the two shocks are negatively correlated (α < 0). In this case, ρ̃y is greater

than ρx and so the AR(1) process overstates the true amount of persistence. Conversely,

if the shocks are positively correlated ρ̃y is less than ρx, as shown in the lower panel.

[figure 1 around here]

These two panels document that long-term persistence is increased substantially for

lower values of ρx when α is negative and that long-term persistence is decreased substan-

tially for higher values of ρx when α is positive.

Figure 2 displays IRFs for three sets of parameter values. Each panel plots the true

response of yt to a one-time shock in ex,t and the response according to the AR (1) spec-

ification for yt. These three panels clearly document that misspecifying the aggregate

variable yt as an AR(1)—the correct specification of the most complex of the underlying

processes—can give inaccurate impulse responses at both short and long horizons. The

AR(1) representation of yt overestimates the long-term consequences of the shock when

ex,t and ez,t are negatively correlated and underestimates them when the two shocks are

positively correlated. The bottom two panels document that these bad long-term predic-

tions only become apparent at forecast horizons of over 30 periods. At forecast horizons

shorter than 30 periods, the AR (1) representation of yt overestimates the consequences

of the crisis by a large margin when the shocks are positively correlated and vice versa.

For example, when the shocks are negatively correlated, then the AR(1) representation

predicts that the initial reduction will be followed by an immediate but gradual recovery.

By contrast, the true response is a further deterioration of almost the same magnitude

followed by a somewhat faster recovery.

[figure 2 around here]

In this section, we focused on a case in which the most complex time-series specification

of a component is an AR(1), that is, a relatively simple process. Although the correct time-
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series specification of the aggregate is more complex, namely an ARMA(1, 1), it has only

two parameters and one should be able to estimate this more complex time-series model

with data sets of typical length. One can also improve on the AR (1) specification by using

higher-order AR processes, although these would—like the AR(1)—not be correct either,

unless the number of lags is high enough to result in a sufficiently accurate approximation.

However, the option to estimate a more complex representation may not always be feasible.

If the two components are, for example, both an AR(4), one would have to estimate an

ARMA(8, 4), and if yt is the sum of threeAR(4) processes, then one would have to estimate

an ARMA(12, 8) to make sure that the univariate representation is not misspecified. In the

next section, we document that a better strategy might be to estimate separate time-series

models for the components and then explicitly aggregate the forecasts of the components

to obtain forecasts for the aggregated variables.

3 Time series properties of US GDP

In this section, we discuss the relevance of the analyis in the last section by comparing an

estimated univariate representation of US GDP with the representation that is implied by

an estimated multivariate representation of its spending components.

3.1 Empirical specifications

The specification of the multivariate model is given by the following VAR:

ln(st) =

p∑
j=1

Bj ln(st−j) + es,t, (23)

where st is a 5 × 1 vector containing the expenditure components, consumption, ct; in-

vestment, it; government expenditures, gt; exports, xt; and imports. mt. The forecast for

12



yt+τ follows directly from

yt+τ ≡ eln(ct+τ ) + eln(it+τ ) + eln(gt+τ ) + eln(xt+τ ) − eln(mt+τ ). (24)

The estimated univariate representation for aggregate output is given by:16

ln(yt) =

p∑
j=1

aj ln(yt−j) + et. (25)

The time series for yt itself is also constructed using equation (24) so that we are comparing

like with like exactly. The key feature of the univariate time-series model is that there

is only one type of shock. If output turns out to be lower than expected, i.e., et < 0,

then the predicted effect on future values of yt will always have the same pattern with the

magnitude proportional to the value of et.

Both time-series processes are estimated with ordinary least squares (OLS). Given that

the variables could very well be integrated, it is important to add enough lags to ensure

that the shocks are stationary and spurious regression results are avoided. If the time series

are known to be integrated, then efficiency gains are possible by imposing this. Additional

restrictions can be imposed if the series are cointegrated. If these restrictions are correct,

but are not imposed, then the estimated parameter values will converge towards the true

parameter values at rate T , that is, there is superconsistency. If the restrictions are not

correct and are nevertheless imposed, then the system is misspecified and the estimated

system will not converge towards the true system. Because of superconsistency, we prefer

not to impose these types of restrictions on the system.

3.2 Impulse response functions

The response of a negative one-standard-deviation shock to et on (the log of) US GDP, i.e.,

the impulse response function (IRF), is displayed in figure 3.17 Even though the specifica-

tion in equation (25) does not impose a unit root and contains a quadratic deterministic
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trend, the estimated specification documents that the response to the shock et is very

persistent. It is exactly this type of result that underlies the argument of Campbell and

Mankiw (1987) that one should expect economic downturns to have permanent effects.

[figure 3 around here]

If output is generated by the multivariate model, i.e., according to equations (23) and

(24), then there are five reduced-form shocks that result in a drop in output. Consequently,

there are five impulse response functions (IRFs), that is, five different ways in which output

could respond. There are fierce debates in the economic literature on how to interpret

shocks, but the interpretation of the shocks is not important for the point we want to make,

that is, a model used to forecast GDP should allow for different forecasting patterns. For

convenience, we will label the reduced-form shocks according to the dependent variable of

the equation. For example, we will refer to ec,t as the consumption shock, but this is just

a label and not meant to hint at a structural interpretation. The five IRFs are plotted in

figure 4. The figure makes clear that according to the multivariate model there are shocks

that have an extremely persistent impact on output. The figure also makes clear, however,

that there are shocks that have a transitory impact on output.

[figure 4 around here]

3.3 Relevance of the theoretical arguments for modelling US GDP

The IRFs displayed in figure 4 indicate that several of the issues raised in section 2 could

be relevant for forecasting US GDP using a univariate representation. The IRFs indicate

that some events have long lasting consequences and others do not. For example, the

“consumption shock” has a very persistent effect, but the “investment shock” and the

“export shock” do not. This means that the analysis of section 2.1 is relevant. That is,

since some components of US GDP are not stationary, the univariate representation will

imply that all shocks to GDP will have a long-lasting effect.
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With a finite sample, it is more difficult to determine whether the relatively parsimo-

nious representation of GDP used here is the correct univariate representation. But the

results of section 2.2 may give some guidance on potential problems. We find that the

innovations of the components of GDP are positively correlated. As documented in figure

4, GDP consists of very persistent and not so persistent components. This resembles the

example displayed in the bottom panel of figure 2. In this example, the univariate repre-

sentation of the aggregate random variable overestimates the impact of shocks for a long

period (up to 30 quarters), but underestimates the very long consequences.

4 Forecasting US GDP with univariate and multivariate

models

We use the univariate and the multivariate time-series models to forecast future GDP

levels. Forecasts are out-of-sample forecasts, because forecasts made at t∗ only use data

up to date t∗.18 We use the latest vintage of data for each forecast.

The left panel of figure 5 plots the average forecast error at different forecast horizons

according to the univariate and the multivariate time-series models. The figure shows

that the predictive power of the univariate model is just as good as that of the multi-

variate model in terms of average forecast errors. This does, of course, not imply that

there are no multivariate models that outperform a univariate model. In fact, Stock and

Watson (2002) document that a forecasting model that uses indexes based on the prin-

cipal components of many economic variables outperforms autoregressive univariate for

most (but not all) variables. Nevertheless, the result is somewhat surprising. After all,

the IRFs of the expenditure components indicate that GDP has components characterized

by different persistence levels and the theoretical analysis indicated that there should be

advantages in constructing forecasts of the aggregate by combining the separate forecasts

of the components.
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But average forecast errors may obscure some interesting patterns. In particular, the

multivariate model turns out to do substantially better in forecasting at longer forecast

horizons during recessions. The right panel of figure 5 shows forecast errors averaged

across the six US recessions starting with the 1973-75 recession. NBER dates are used to

determine whether a quarter falls in a recssion. The figure shows that the multivariate

model generates much better forecasts at higher forecasting horizons.

[figure 5 around here]

Since average forecasting errors of the two types of models are similar, there must be

periods when the univariate time-series model generates better forecasts. Interestingly,

that happens during “ordinary” times, when the economy is neither doing very well nor

very poorly, but continues to grow at a steady pace. The estimated multivariate models

have fewer degrees of freedom and this seems to come at a cost during stable periods when

simple forecasting rules suffice.

For the UK, the two time-series model generate forecast errors of similar magnitude

even during economic downturns. The multivariate time-series model does generate more

accurate forecasts, however, at the troughs of recessions. Below, we will discuss in more

detail in which way UK recessions differ from US recessions.

5 Predictable US recoveries

In this section, we discuss in more detail the differences in forecasts of the univariate and

the multivariate times-series model made at the trough of recessions.

Explaining the figures. Figures 6, 7, and 8 show the results for US recessions. The

vertical lines in each figure indicate the forecasting point. The thick solid line plots the

actual data. Each figure also plots the predicted growth path according to the two time-

series models and a deterministic time trend.19
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1973-75 US recession. The top panel of figure 6 displays the results for the 1973-75

recession.20 Forecasts are made at the trough of the recession, 1975Q1. Forecasts from

the univariate one-type-shock model indicate that output losses will be very persistent.

Instead, there is a rapid recovery back to the long-term trend. Given that there are at

times persistent changes in GDP, the univariate representation will always reflect this

persistence to some extent.21 By contrast, the forecast based on the multivariate model

captures the fast recovery of GDP after the trough of the recession. In addition to the

predicted short-term increase in growth rates, the multivariate model also captures the

subsequent return to normal growth rates. Not surprisingly, the path forecasted in 1973Q2

does not predict the recessions of the early eighties.

The exercise discussed here should not be considered as a horse race of two forecasting

models. What the results show is that (i) some economic downturns are followed by faster

than normal growth and seem to have little or no permanent effects and (ii) this type

of pattern is unlikely to be predicted by univariate representations, whereas multivariate

VARs do have the flexibility to capture this.

[figure 6 around here]

1980 US recession. The bottom panel of figure 6 displays results for the first recession

of the early eighties. Forecasts are made at the trough, 1980Q3. Both models predict that

the shortfall of GDP relative to its trend value observed in 1980Q3 will remain of roughly

the same magnitude up till 1984. This means that both models miss the short-lived pickup

in growth rates just after 1980Q3 and both miss the second recession in the early eighties.

In 1984, the economy has recovered from the second recession, although GDP is still below

its trend value, and GDP is in fact close to the levels predicted by both models using data

up to 1980Q3.

The two 1980Q3 forecasts diverge in their predictions for the post-1984 period. The

1980Q3 forecast according to the univariate representation predicts that the gap between
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GDP and its (ex-post) trend value will not become smaller. By contrast, the 1980Q3

forecast based on the multivariate model indicates that the gap will become smaller, which

is indeed what happened. In 1986, GDP was back to its trend value, which is in line with

the 1980Q3 prediction according to the multivariate model.

The recovery predicted by the multivariate model in 1980Q3 is quite different from the

recovery predicted in 1973Q2. Whereas, the multivariate model predicts a quick return at

the trough of the seventies recession, it predicts a much more gradual return at the trough

of the first early eighties recession.

1981-82 US recession. The top panel of figure 7 reports the results for the forecasting

exercise when forecasts are made at the end of the second early-eighties recession, 1982Q4.

From this point onwards, the US economy recovers remarkably quickly. Whereas the

economy is almost 9% below its (ex-post) trend level at the end of 1982, this gap is

only 2.5% at the end of 1984 and only 1% at the end of 1985. The multivariate model

captures this remarkable recovery very well. It does not capture, however, the fact that

in subsequent years the gap gets even smaller. The univariate representation completely

misses the recovery and predicts, again, that ground lost during the recession is permanent.

Both the behavior of GDP during this recession and the fact that the remarkable

recovery can be predicted by a simple time-series model strongly suggest that it is not

always the case that an unexpected change in real output of x percent should lead to a

change of the long-term forecast of x percent.

Although our multivariate model is a simple VAR, with five variables and four lags,

it allows for a rich set of dynamics. It is, therefore, not always easy to understand what

features of the data lead to particular predictions. For this particular period, it is possible

to point at the reason why the model predicts a sharp recovery. The period just before

1982Q4 is characterized by sharp drops in investment and exports. As documented in

figure 4, these correspond to temporary reductions in GDP. Consequently, the multivariate

model predicts that these negative influences will disappear quickly. During 1982, both
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consumption and government expenditures have started to grow already, which according

to figure 4 correspond to permanent positive changes in GDP. This is consistent with the

predicted persistence of the recovery.

[figure 7 around here]

1990-91 US recession. The bottom panel of figure 7 displays the results for the reces-

sion of the early 1990s. The results differ from those reported above for previous recessions

in that now both models predict a permanent loss in GDP. Although the loss in actual

GDP is indeed very persistent and GDP does not get back to its trend level until 1997,

the actual loss is not permanent.

2001 US recession. The results for the early naughties recession are displayed in the

top panel of figure 8. During this recession, there is not a sharp contraction in output. It

is better characterized by a period of near zero growth rates. The recovery is also very

gradual. The multivariate model is wrong in predicting a short-term pick up in growth

rates, but is correct in its longer-term forecast that the loss in GDP is not permanent. The

univariate representation predicts again that there will be no recovery, not in the short

term, which in this case is indeed what happened, and also not in the long term, which is

not what happened.

[figure 8 around here]

US financial crisis, 2008-2009 The bottom panel of figure 8 plots the results for the

forecasts made in 2009Q2, when the sharp fall in GDP had come to a halt.22 Similar to

forecasts made in previous recessions, the multivariate model again predicts that part of

the loss in output relative to trend will be recovered in a couple years. Different from

forecasts made in previous recession is that the univariate now also predicts a recovery. In

fact, at this point in time, the univariate model predicts stronger long-term growth than

the multivariate model. Unfortunately, forecasts of both models were too optimistic.
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Starting in 2012, the multivariate model starts to predict the future reasonably well.

In particular, it correctly predicts that output loss relative to trend will not be reversed.23

The univariate representation remains more optimistic than the multivariate model until

the end of the sample, sometimes marginally more optimistic, but typically substantially

more optimistic. Using data up to the end of our sample, the univariate model predicts

that output in 2025 will be 1% below its extrapolated trend value whereas the multivariate

model predicts that the gap will be 4.5%.24

Why are forecasts made with a univariate model too pessimistic? In section

2, we gave two reasons why univariate representations could be too pessimistic regarding

the long-term impact of negative shocks. The common element in both reasons is that it

is difficult for a univariate representation to generate the best possible forecast when the

variable of interest is a sum of variables with different persistence.

The first reason focused on the case where the shocks affecting the aggregate where

different shocks. Even the correct univariate representation has only one shock and would

never be able to capture that there are actually multiple shocks that affect the aggregate

for different lengths of time. The second reason focused on the case where the components

are driven by the same shock, but the estimated univariate model is not complex enough.

Figure 4 showed that US GDP does consist of components with different degrees of

persistence. Moreover, shocks to these components are clearly correlated. Nevertheless,

we doubt that that the reason the univariate model generates different forecasts is that it

is not complex enough. Our results are robust to alternative specifications and resemble

those found in the literature for a variety of univariate representations. It seems more

plausible to us that US GDP is affected by different types of events which affect the US

economy for different durations. Univariate representations would not be able to capture

this.
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6 Predictable UK recoveries?

UK recessions before the financial crisis. Post-war UK recessions are not as inter-

esting as US recessions. Instead of sharp contractions, like those observed for the US, UK

recessions were typically prolonged periods of low growth rates. Similarly, recoveries were

very gradual. Although the multivariate model has better long-term predictions than the

univariate representation in all but one of the recessions that occurred before the financial

crisis, the predictions of the two models are roughly similar. Moreover, forecasted paths

are close to straight lines, which is not surprising given the shallow aspect of economic

downturns in the UK. The exception to these observations is the financial crisis, which

will be discussed next.

UK financial crisis, 2008-2010. Figures 9 and 10 plot the realizations of UK GDP

together with forecasts made by the two models at four different forecasting points. First

consider the two panels of figure 9, which plot the results when forecasts are made at the

middle of the period with large negative growth rates, 2008Q4, and at the end of this

period, 2009Q2.

[figure 9 around here]

In the middle of the period when GDP dropped sharply, the univariate representation

predicts an immediate and sustained return to positive growth rates. It is even somewhat

more optimistic than the prediction of a random walk model with drift in that it predicts

that GDP will grow faster than its trend in the next couple years, that is, it predicts that

part of the reduction of the pre-crisis positive gap between GDP and its trend value will be

recovered. By contrast, the multivariate model predicts that GDP will grow at rates that

are somewhat lower than the trend growth rate, which is closer to the observed outcomes,

although also too optimistic. In 2009Q2, the univariate representation still predicts that

GDP will end up substantially above its trend value. The multivariate model forecasts
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that growth rates would be around zero for several quarters followed by a very gradual

recovery. These forecasts are slightly below the actual outcomes.

[figure 10 around here]

The two panels of figure 10 plot the results when forecasts are made in 2009Q3 and

2010Q1. Both of these quarters are in the period when the UK economy had just started its

recovery. For both forecasting points, the univariate representation’s predictions indicate

that the economy will start growing at rates slightly higher than those observed in the

past so that it still predicts that part of the losses will be recovered. By contrast, the

multivariate model—using data up to 2009Q3—predicts that there first will be a period

with low growth rates, which eventually is followed by a period of faster growth rates. This

is indeed what happened, although the predictions are a little bit too pessimistic. Half

a year later, in 2010Q1, the forecasts of the multivariate model have improved somewhat

and do a good job in predicting the subsequent development of UK GDP.

We do not want to argue that the multivariate model is a remarkably good forecasting

model. Neither model does very well in predicting subsequent output growth during this

period, although it is worth noting that the multivariate model realizes quickly that output

losses will be very persistent. The point that we want to make is that multivariate models

have the flexibility to predict different types of forecasting patterns. By contrast, univariate

representations are quite restrictive and may miss both predictable recoveries and—as is

shown here—a predictable deterioration during a downturn. The main reason why the

univariate representation is restrictive is that it has only one type of shock. Since the

GDP data used to estimate the univariate representation contains a persistent component,

changes in GDP will always lead to changes in the long-term forecasts of the univariate

model. Although, univariate forecasts always have a permanent component, we allow

for the possibility that short-term forecasts are different from long-term forecasts, since

our empirical univariate representation has four lags. But all of our estimated univariate

representations imply predictions that are quite close to those of a random walk with drift.
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7 Concluding comments

Macroeconomic forecasts are made with simple univariate models, for example, Campbell

and Mankiw (1987),25 as well as with advanced multivariate models, for example, Stock

and Watson (2002).

In this paper, we reviewed reasons why univariate representations of a sum of random

variables could miss key predictable aspects of this random variables. In fact, even if

a random variable is a random walk, then that does not mean that there are no fore-

castable changes. In particular, if an aggregate consists of stationary and non-stationary

variables, then the univariate representation will indicate that all shocks have permanent

consequences even though that is, of course, not the case for shocks to the stationary com-

ponents. Moreover, the correct specification of an aggregate of random variables could be

quite complex. We argued that it might be better to estimate time-series models for the

components and obtain forecasts for the aggregate by explicitly aggregating the forecasts

of the components.

Despite the empirical observation that US GDP consists of very persistent and less

persistent variables, the univariate and multivariate time-series model have similar fore-

casting performance in terms of average forecast errors. Such a finding may explain why

forecasts based on univariate models are still taken seriously.

However, our simple multivariate time-series model clearly outperforms the univariate

model, when it is used to forecast future GDP during recessions. Whereas the univariate

model typically predicts that recessions have large and negative consequences, the multi-

variate model often correctly predicts that this is not the case. In some cases, for example,

when the drop in GDP is mainly due to drops in components with less persistence such

as investment and exports, it was possible to understand why the multivariate model per-

formed better than the univariate model. In other cases it is not. Nevertheless, the sharply

better performance of our simple multivariate model during recessions and the theoretical

discussion indicate that one should be careful making forecasts with univariate time-series

23



models.

One point that we do not address is the correct level of (dis)aggregation. Consumption

is the sum of non-durable and durable consumption and both are sums of individual

expenditures. So further disaggregation may lead to further improvements. It is not clear,

however, whether one should disaggregate to the lowest possible level, since sampling

variation typically increases when one considers disaggregated variables.

A Data sources

US data. Data are downloaded from the web site of the Federal Reserve Bank of St.

Louis. They are (i) Consumption: real personal consumption expenditures; (FRED code:

PCECC96); (ii) Investment: real gross private domestic investment (GPDIC1); (iii) Gov-

ernment expenditures: real government consumption expenditures & gross investment

(GCEC1); (iv) Exports: real exports of goods & services (EXPGSC1); and (v) Imports:

real imports of goods & services (IMPGSC1). All time series are seasonally adjusted quar-

terly data measured in billions of chained 2009 dollars. The data were last updated May

29, 2015.

The GDP data used is the sum of the consumption, investment, government expendi-

tures, and exports minus imports. Adding up these real time series generates a time series

that is extremely close, but not exactly identical to the actual GDP data. Our approach

ensures that the components used in the multivariate model add up exactly to the data

used in the univariate model. This way, we avoid clutter in the paper by describing small

differences in the GDP data used in the two types of time-series models.

UK data. Data are from the Office of National Statistics. They are (i) household

final consumption expenditures (ONS code: ABJR) plus final consumption expenditure of

non-profit institutions serving households (HAYO); (ii) total gross fixed capital formation

(NPQT); (iii) general government: Final consumption expenditures (NMRY); (iv) balance
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of payments: Trade in goods and services: Total exports (IKBK); (v) Balance of payments:

Imports: Trade in Goods and services (YBIM). All data are seasonally adjusted quarterly

data and the base period is 2011. The GDP data used is the sum of these five components.

Investment in inventories are excluded, since they contain some very volatile high frequency

movements.

B Robustness

Figures 11 through 16 display the results for several robustness exercises. Figure 11

documents that our result that multivariate time-series models generate more accurate

long-term forecasts than univariate models is also true when no deterministic trend term

is included, when only a linear trend term is included, and when the number of lags are

chosen by AIC. Figures 12 through 16 illustrate that even the actual forecasts are very

similar when the number of lags are chosen with AIC.26 At the earlier forecasting dates,

there is a bit of variation in the number of lags chosen by AIC, especially for the univariate

specification. After this, the number of lags chosen for the univariate specification is three,

which is one less than our benchmark number. For the multivariate specification, the

number of lags remains two for a while and then jumps to five lags, one more than our

benchmark number.
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Notes

1See: http://gregmankiw.blogspot.com/2009/03/team-obama-on-unit-root-hypothesis.html.

2They allow for the possibility that θ (L) has a root equal to 1, which would imply that yt is stationary

around a deterministic time trend.

3We also compare univariate and multivariate time-series models to predict UK recoveries. Whereas

several US recessions were followed by remarkable recoveries, economic recoveries in the UK were much

more gradual and the predictions of the two types of models are similar. However, the multivariate model

does outperform the univariate model during the great recession. In particular, the multivariate model

correctly predicts a further deterioration in the initial phase of the economic downturn and correctly

predicts its long-lasting impact.

4Fair and Schiller (1990) also show that GDP forecasts based on the sum of forecasts of GDP’s compo-

nents help improve forecasts when compared with univariate forecasts. They use univariate representations

of the components, which makes it possible to disaggregate at a higher level. Stock and Watson (2002)

generate forecasts using a small number of indexes that are based on the principal components of a large

set of economic variables. We refer the reader to Chauvet and Potter (2013) for a recent survey of the

forecasting literature.

5By contrast, Smets and Wouters (2007) show that their DSGE model performs better in forecasting

than a Bayesian VAR.

6This time-series specification is a generalization of the one studied in Blanchard et al. (2013).

7It is always true that

(1− ρzL) (1− ρL) yt = (1− ρzL) ex,t + ez,t.

Thus, an equivalent definition of ey,t would be the following:

(1− ρL) ey,t = (1− ρzL) ex,t + ez,t.

These two equations are helpful in deriving the formulas in this section.

8σz > 0, since we assumed that ρz/ρ > 1.

9In the (very) special case that (1− ρ)xt happens to be equal to ρ∆zt, then E[yt+k] = yt for k ≥ 1.

10See Granger and Morris (1976).

11In theory it is, of course, even possible that the sum of random variables is not random.

12One aspect that seems to be ignored in the econometrics literature is that the dgps of the individual

components may be “aligned” to the same factors, which could mean that the time-series representations of

the components are similar, making it less likely that the aggregate has a much more complex representation
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than its components. For example, if markets are complete, then market prices will align agents’ marginal

rates of substitution—and, thus, their consumption growth processes—even if agents face very different

income processes.

13The misspecification is likely to be worse than indicated in this section. Typically, log-linear processes

are more suitable than linear processes. But if yt ≡ xt + zt and xt and zt are log-linear processes, then

neither yt nor ln(yt) is a linear process and the convention of modelling ln(yt) as a linear process is, thus,

not correct. In fact, the effects of shocks on yt would be time-varying. These issues are further discussed

in Den Haan et al. (2011).

14Since ey,t is white noise, it must be true that

E [(1 + θL) ey,t × (1 + θL) ey,t−1] = θE
[
e2y,t
]
.

It is also true that

E [(1 + θL) ey,t × (1 + θL) ey,t−1] = ρx
(
−E [ex,tez,t]− E

[
e2z,t
])
,

since (1 + θL) ey,t = ex,t+(1− ρxL) ez,t and both ex,t and ez,t are white noise. Combining both equations

gives the expression for θ.

15Equation (19) implies that |ρ̃y| > |ρx| if

(1−ρ2x)
(1−ρ2x)+(ρx+θ)2

θ > 0 when ρx > 0,

(1−ρ2x)
(1−ρ2x)+(ρx+θ)2

θ < 0 when ρx < 0.

(26)

Consequently, |ρ̃y| > |ρx| if and only if θρx > 0, that is, if ρx and θ have the same sign.

16We follow common practice and use four lags, unless stated otherwise. In appendix B, we show that the

results are similar when the number of lags is chosen by AIC, although the associated long-term forecasts

are somewhat less precise. Results not reported here indicate that long-term forecasts are substantially

less precise if the Bayesian Information Criterion (BIC) is used. All models in this paper also include

a constant and a linear-quadratic deterministic trend. Appendix B also shows that key results are very

similar if no trend is included and when only a linear trend is included. Campbell and Mankiw (1987) also

consider ARMA representations, but the results are similar to those obtained with AR represenations.

The only exception is when third-order MA components are included, but the authors point out that the

implied impulse response functions of this specification are estimated very imprecisely .

17See Appendix A for further details on data sources. Whereas the forecasting exercise discussed in
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the next section is based on real-time data, the results in this subsection are based on the full sample of

quarterly US data from 1947Q1 to 2015Q1. The results are very similar if the sample ends in 2006Q4 and

the financial crisis is, thus, excluded, except that the IRF of the “import” shock is then less persistent.

18Strictly speaking, this is pseudo out-of-sample forecasting, since future data is available at each fore-

casting point. We estimate specifications with two lags if they have fewer than 135 observations and four

lags otherwise. The exact cutoff point does not matter, but it is important to only use only two lags at the

early dates of our forecasting exercise, because the specifcations with four lags generate strange forecasts,

which is likely to be due to the low number of degrees of freedom. Note that four lags means estimating

23 coefficients per equation.

19The time trend shown in the figures is a linear trend estimated on the full sample of GDP and is

included as a point of reference. The linear-quadratic trends included in the univariate and multivariate

models are estimated up until t∗.

20Because we focus on out-of-sample forecasts, we have only 109 quarterly observations for forecasts at

the trough of this recession, which leaves few degrees of freedom when the VAR is estimated with the

default specification, that is, four lags for each of the five variables and a quadratic deterministic trend.

By using a VAR with only two lags for this recession, we avoid the strong sensitivity of forecasts when the

forecasting date shifts slightly.

21However, since we use an AR (4) to describe real output, our model does allow for a further predictable

deterioration and/or for the possibility that (a large) part of the initial drop can be expected to be reversed.

22At the beginning of the financial crisis, both time-series models wrongly predict that a substantial part

of the losses will be recaptured quickly. These results are not displayed in the graphs.

23These results are not displayed in the figures.

24The economy was substantially above its trend value before the crisis, which means that these long-

term predictions imply larger losses relative to the hypothetical case when there would have been no

financial crisis and subsequent average real output growth would have been equal to the trend growth rate.

25More recently, Edge and Gurkaynak (2010) and Edge et al. (2010), show that the forecasting perfor-

mance of estimated DSGE models can be worse than a simple forecast of a constant output growth.

26Although not shown, the same is true for different trend specifications.
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Figure 1: AR(1) coefficient of yt = xt+ zt according to incorrect univariate representation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
A: Negative correlation shocks

ρx

 

 

α = −0.5

α = −0.7

α = −0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
B: Positive correlation shocks

ρx

 

 α = 0.5
α = 0.7
α = 0.95

Notes: The graph displays the root of the AR(1) representation of yt = xt + zt as a function of the
AR root in the true time-series representation of yt when ez,t = αex,t. The solid line is the 45◦line.
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Figure 2: IRFs of yt = xt+zt according to correct and incorrect univariate representation
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Notes: The graph plots the true responses of yt = xt + zt to a one-time shock in ex,t and the
response according to the AR(1) representation, which is the time-series representation of the
most complex of the yt components. In panel A, ez,t = −0.9ex,t; in panel B, ez,t = −0.5ex,t; and
in panel C, ez,t = 0.9ex,t.
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Figure 3: Effect of the shock in univariate representation on US GDP
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Notes:The graph plots the response of output following a one-standard-deviation negative shock
according to the univariate, one-type-shock, model.

33



Figure 4: Effect of reduced-form VAR shocks on US GDP
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shock in the indicated reduced-form VAR shock that leads to a reduction in GDP.
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Figure 5: Average forecast errors - US
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Notes: These graphs plot the average forecast errors of the indicated time-series model.
NBER recessions dates are used to identify whether a quarter is a “recession quarter”.
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Figure 6: The 1973-75 and the 1980 US recessions
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Notes: This figure plots the two forecasted time paths for US GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line.
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Figure 7: The 1981-82 and the 1990-91 US recessions

1978 1980 1982 1984 1986 1988 1990 1992
-15

-10

-5

0

5

10

15

20

25

30

35

40

%
 d

iff
er

en
ce

 r
el

at
iv

e 
to

 tr
ou

gh
 

1986 1988 1990 1992 1994 1996 1998 2000
-15

-10

-5

0

5

10

15

20

25

30

35

40

%
 d

iff
er

en
ce

 r
el

at
iv

e 
to

 tr
ou

gh
 

deterministic
      trend

   forecast
multivariate model

   forecast
multivariate model

   forecast
univariate model

   forecast
univariate model

deterministic
      trend

actual GDP

actual GDP

1991Q1

1982Q4

Notes: This figure plots the two forecasted time paths for US GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line.
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Figure 8: The 2001 and great US recession

Notes: This figure plots the two forecasted time paths for US GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line.
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Figure 9: The start and trough of the great UK recession
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Notes: This figure plots the two forecasted time paths for UK GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line.
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Figure 10: The initial recovery of the great UK recession
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Notes: This figure plots the two forecasted time paths for UK GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line.
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Figure 11: Average forecast errors - US - robustness
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Notes: These graphs plot the average forecast errors of the indicated time-series model.
NBER recessions dates are used to identify whether a quarter is a “recession quarter”.
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Figure 12: The 1973-75 and the 1980 US recession - AIC
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Notes: This figure plots the two forecasted time paths for UK GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line. Number of lags chosen with AIC.
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Figure 13: The 1981-82 and the 1990-91 US recession - AIC
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Notes: This figure plots the two forecasted time paths for US GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line. Number of lags chosen with AIC.
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Figure 14: The 2001 and great US recession - AIC
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Notes: This figure plots the two forecasted time paths for US GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line. Number of lags chosen with AIC.
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Figure 15: The start and trough of the great UK recession - AIC
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Notes: This figure plots the two forecasted time paths for UK GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line. Number of lags chosen with AIC.
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Figure 16: The initial recovery of the great UK recession - AIC
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Notes: This figure plots the two forecasted time paths for UK GDP together with the realized
values and a deterministic time trend. All four variables are relative to the value of GDP at the
forecasting date, which is indicated by the vertical line. Number of lags chosen with AIC.
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