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Abstract

We propose a method to solve models with heterogeneous agents and aggregate

uncertainty. The law of motion describing aggregate behavior is obtained by explicitly

aggregating the individual policy rule. The algorithm is simpler and faster than exist-

ing algorithms that rely on parameterization of the cross-sectional distribution and/or

a computationally intensive simulation step. Explicit aggregation establishes a link

between the individual policy rule and the set of necessary aggregate state variables,

an insight that can be helpful in determining what state variables to include in other

algorithms as well.
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1 Introduction1

The behavior of individual agents in DSGE models with aggregate and idiosyncratic risk2

depends on perceived laws of motions of prices and/or aggregate variables that are, in3

equilibrium, consistent with the behavior of the individuals. The algorithm developed by4

Krusell and Smith (1998) �nds solutions for parameterized individual policy rules and sep-5

arately parameterized laws of motion for aggregate variables. The individual policy rules6

describe optimal behavior conditional on the aggregate laws of motions and the aggregate7

laws of motion provide a close �t for the behavior of the aggregates in a simulated panel8

that is generated using the individual policy rules. Algan, Allais, and den Haan (2008,9

2009) and Reiter (2009) parameterize the cross-sectional distribution, which is used to10

calculate next period�s aggregate moments by numerically integrating over the individual11

choices. These algorithms have in common that (i) an additional function related to an12

aggregate variable, like a moment or the distribution, is separately parameterized and (ii)13

information about the cross-sectional distribution� obtained by simulating a panel or by14

parameterizing the distribution� is used to establish a link between the individual and15

aggregate behavior.16

The algorithm developed in this paper establishes the consistency between individual17

and aggregate behavior in a much more direct manner, namely by explicit aggregation of18

the individual policy rules. The direct link not only simpli�es the calculations considerably,19

but it is also useful in itself, since it makes clear what information about the aggregate20

economy should be included in the set of state variables.21

To clarify the algorithm we abstract, for the moment, from aggregate and idiosyncratic22

uncertainty. Consider the following simple model in which all agents are identical except23

for their initial capital stock. Agents face a standard intertemporal optimization problem24

taking the return on capital as given. The return on capital is a function of the aggregate25

capital stock only. We parameterize the individual policy function as26

k0 = 	0(s) +
IX
i=1

	i(s)k
i; (1)

where s is a vector containing the aggregate state variables. From equation (1) it can27
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be seen that the individual policy rule is assumed to be a polynomial in k, but that the1

dependence of k0 on s is not restricted. Using monomials as in equation (1) simpli�es2

the exposition. In section 4, we show that other basis functions such as the elements of3

orthogonal polynomials or B-splines could be used as well.4

A key step in models with heterogeneous agents is to establish a law of motion for5

aggregate capital, K. Given the expression in equation (1), this aggregate law of motion6

for K follows directly from aggregating the individual policy rule. That is,7

K 0 = 	0(s) +
IX
i=1

	i(s)M(i) (2)

where K 0 is next period�s per capita capital stock and M(i) is the cross-sectional average8

of ki with K =M(1). Note that we need an expression for the average level of the capital9

stock and not, for example, for the average of the log capital stock. Consequently, the left-10

hand side of equation (1) has to be equal the level of k0. In addition, explicit aggregation11

requires that the coe¢ cients of the monomials, 	i(s), depend only on the aggregate state12

variables, s, and not on k.13

Equation (2) makes clear that the I cross-sectional moments corresponding to the I14

monomials, ki, are required as inputs for predicting K 0. That is, the aggregate set of state15

variables, s; should include M(1) through M(I) and contains, thus, as many aggregate16

moments as there are basis functions in the approximating individual policy function. But17

if the �rst I cross-sectional moments are state variables, then we need aggregate laws of18

motions to predict these moments as well, since they appear as arguments in next period�s19

policy function. If we had individual policy rules for (k0)j , j = 1; : : : ; I, then one could get20

the corresponding aggregate policy rules by explicit aggregation. One way to get a policy21

rule for (k0)j for j > 1 is to use the one that is implied by the approximation for k0 given in22

equation (1). This is a polynomial of order Ij > I, which means that additional moments23

would have to be added to s. Then additional policy rules would be needed to predict24

these additional moments, which in turn would introduce more state variables. Without25

modi�cation, a solution based on explicit aggregation requires including an in�nite number26

of moments as state variables whenever I > 1.27
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The key approximating step of our algorithm is to break this in�nite regress problem1

and to construct separate approximations to the policy rules for (k0)j by projecting (k0)j2

on the space of the �rst I monomials. Thus,3

�
k0
�j
= 	(k0)j ;0 +

IX
i=1

	(k0)j ;i(s)k
j ; 1 < j � I: (3)

The coe¢ cients of the approximating functions in (1) and (3) can now be solved for with4

standard projection techniques.5

The algorithm does not need a complete characterization of the cross-sectional distri-6

bution and, thus, does not have to rely on simulation procedures or a parameterization of7

the cross-sectional distribution to generate this information. The individual policy rules8

make clear what aspects of the cross-sectional distribution are needed to construct aggre-9

gate laws of motions. Those are the �rst I moments. By directly approximating the policy10

rules for (k0)j with 1 � j � I we can get� using the equations of the model and explicit11

aggregation� a law of motion that describes the joint behavior of these J moments that12

is consistent with individual behavior. The algorithm, therefore, captures the information13

about the cross-sectional distribution that is needed to solve the model.14

2 Model to solve15

First-order and equilibrium conditions. Our numerical solution to the incomplete16

markets economy with aggregate uncertainty described in den Haan, Judd, and Juillard17

(2009) consists of individual policy functions, k0("; k; a;M ; 	), where " is the (exogenous)18

individual employment status,1 k the individual capital stock, a the exogenous aggregate19

state, 	 the coe¢ cients of the policy function, and M a set of cross-sectional means of20

kj , 1 � j � I; measured at the beginning of the period after the new employment status21

has been observed. We condition the cross-sectional moments on the employment status.22

As will become clear below, this is a natural thing to do for our algorithm, but it is not1

1 In equations, " takes on the value 1 when the agent is employed and the value 0 when the agent is

unemployed. As a subscript of a variable, " is set equal to e when the agent is employed and equal to u

when the agent is unemployed.
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necessary. That is, instead of using, for example, the mean capital stocks of the employed2

and the unemployed, we could use instead just the per capita capital stock.3

The standard projection procedure to solve for 	 consists of the following three steps.4

1. Construct a grid of the state variables.5

2. At each grid point, de�ne an error term, v, given values for ", k, a, and M as6

v("; k; a;M ; 	) = 1
c �

P
"0;a0

h
�(r0+1��)

c0

i
�aa0""0

= 1
(r+1��)k+wl�k0(";k;a;M ;	)

�
P
"0;a0

h
�(r0+1��)

(r0+1��)k0(";k;a;M ;	)+w0l0�k0("0;k0;a0;M 0;	)

i
�aa0""0

= 1
(r+1��)k+wl�k0(";k;a;M ;	)

�
P
"0;a0

h
�(r0+1��)

(r0+1��)k0(";k;a;M ;	)+w0l0�k0("0;k0(";k;a;M ;	);a0;M 0;	)

i
�aa0""0

with

l = (1� �)l"+ �(1� "), l0 = (1� � 0)l"0 + �(1� "0),

r = �a
�

K
l(1�u(a))

���1
, r0 = �a0

�
K0

l(1�u(a0))

���1
,

w = (1� �)a
�

K
l(1�u(a))

��
, w0 = (1� �)a0

�
K0

l(1�u(a0))

��
,

� = �u(a)

l(1�u(a)) , and �
0 = �u(a0)

l(1�u(a0)) :

(4)

Here K is the aggregate capital stock, u is the unemployment rate (which is deter-7

mined by the aggregate exogenous state a), r is the rental rate, and w is the wage8

rate. If the worker is employed then he works l hours and his labor income equals9

(1� �)wl. If he is unemployed then he receives �w. The �rst-order conditions of the10

agent, evaluated using the numerical solution v(�j ), correspond to the following set11

of conditions:12

v("; k; a;M ; 	) � 0,

v("; k; a;M ; 	)k0 = 0, and

k0 � 0,

(5)

for all possible values of ", k, a, and M . For the standard projection procedure to13

work, equation (4) has to be a function of ", k, a, and M . For this to be the case,14

we still need to specify the law of motion of M 0.2 Below we show how this can be1

2Given a0 and M 0 the values of r0 and w0 can be calculated since M 0 contains the mean capital stocks

for the employed and the unemployed.
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accomplished without relying on simulation techniques or parameterization of the2

cross-sectional distribution.3

3. 	 is found by minimizing some objective criterion that weighs the values of the error4

terms at the nodes of the grid.5

Beginning and end-of-period distribution. Some agents switch employment status6

at the beginning of the period when the employment shock is revealed. Consequently,7

the end-of-period joint distribution of capital and employment status is not equal to the8

beginning-of-period joint distribution even though each agent still has the same amount of9

capital. Given the transition probabilities it is trivial to calculate (characteristics of) the10

beginning-of-period distribution given (characteristics of) the end-of-period distribution.11

For example,12

K 0
u =

u(a)�aa0uu0 bKu + (1� u(a))�aa0eu0 bKe

u(a0)
(6a)

K 0
e =

u(a)�aa0ue0 bKu + (1� u(a))�aa0ee0 bKe

1� u(a0) (6b)

HereK 0
" stands for next period�s beginning-of-period aggregate capital stock and bK" for the13

end-of-period aggregate capital stock. Thus, solving for 	 using the projection approach14

outlined above only requires that the end-of-period values of M can be calculated given15

the value of a and the beginning-of-period values of M .16

3 Basic formulation of the algorithm17

In this section, we present a basic formulation of the algorithm. We will use several18

assumptions that are not necessary, but these make it easier to understand the key steps19

of the algorithm. The �rst simplifying assumption is that there is no borrowing constraint.20

This assumption permits us to work with smooth policy functions, and will be relaxed in21

the next section.1
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Suppose that the individual policy functions for the employed and unemployed agent2

are parameterized as3

k0u = 	u;0(s) +
IX
i=1

	u;i(s)k
i and k0e = 	e;0(s) +

IX
i=1

	e;i(s)k
i; (7)

where s is a vector containing the aggregate state variables a and M . Note that (i) the4

individual policy functions are polynomials in the individual state variables, but we allow5

for more general dependence in the employment status and the aggregate state variables6

and (ii) the left-hand side is the level of the capital stock and not, for example, the7

logarithm.3 Below we show how to implement the algorithm if the individual policy rule8

is not of this form, but the logic of the algorithm is easiest understood in this particular9

speci�cation.10

Recall from the discussion in section 2 that we only need to be able to calculate end-11

of-period values of the aggregate state, given its beginning-of-period values. For the policy12

function given in equation (7), which is linear in the coe¢ cients of the ki terms, one can13

simply integrate to get14

bKu = cMu(1) = 	u;0(s) +
PI
i=1	u;i(s)Mu(i);bKe = cMe(1) = 	e;0(s) +

PI
i=1	e;i(s)Me(i);

(8)

where M"(i) is the ith uncentered moment of capital holdings with employment status ".15

The �rst lesson to learn from these expressions is that if the individual policy rule is16

an Ith-order polynomial, one has to include the �rst I moments of both types of agents17

as state variables. Thus,18

M = [Mu(1); � � � ;Mu(I);Me(1); � � � ;Me(I)]: (9)

The question is whether by using the aggregate laws of motions given in (8), combined19

with equations (7) and (4), it is possible to solve for 	u and 	e. The answer is in general20

no. With the expressions for bKu and bKe, we can (conditional on a0) calculate K 0 and,1

3The discrete nature of the employment status makes it feasible to specify separate approximating

functions for k0 for each realization of the employment status. If individual productivity has continuous

support, k0 would be a polynomial in both individual state variables.
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thus, next period�s prices. However, next period�s choices are a function ofM 0, so we need2

to calculate all elements of cM . This key step in our algorithm will be discussed next.3

Linear policy rule. Suppose that I = 1, that is, the individual policy rule is linear in4

k. Then s is equal to [a;Ku;Ke] and the expressions in (8) are� together with the value of5

a0� su¢ cient to calculate M 0. Conditional on the individual policy rule being linear, the6

model with heterogeneous agents and aggregate uncertainty can be solved using a standard7

projection technique without relying on simulation procedures or complex approximations8

of the cross-sectional distribution.9

Nonlinear policy rule. We now show that the previous result generalizes to the case for10

I > 1, if we make one additional approximating assumption. For simplicity, suppose that11

I = 2. From the discussion above we know that a minimum speci�cation for s would be12

s = [a;Mu(1);Mu(2);Me(1);Me(2)]. This means that to determine s0 we need expressions13

for cMu(2) and cM e(2). Using equation (7) with I = 2 we get14

�
k0"
�2
=

(	";0(s))
2 + 2	";0(s)	";1(s)k + (2	";0(s)	";2

+(	";1(s))
2)k2 + 2	";1(s)	";2(s)k

3 + (	";2(s))
2 k4:

(10)

Aggregation of this expression implies that we have to include the �rst four moments

instead of the �rst two as state variables, that is,

s = [a;Mu(1); � � � ;Mu(4);Me(1); � � � ;Me(4)]:

This means that to determine s0 we need expressions for cM"(3) and cM"(4), which in turn15

implies that we need additional elements in s. The lesson learned is that whenever I > 116

one has to include an in�nite set of moments as state variables to get an exact solution.17

The key step in our algorithm is to break this in�nite regress problem by approximating18

these policy rules that are needed to determine next period�s aggregate state using lower-19

order polynomials. If we break the chain immediately at I = 2, then (k0")
2 is obtained20

from the approximation1

�
k0"
�2 � 	";(k0)2;0(s) + 	";(k0)2;1(s)k +	";(k0)2;2(s)k2 (11)
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and not from equation (10). Note that 	";(k0)2;j(s) is not equal to 	";j(s): with the2

(k0)2 subscript we indicate that the coe¢ cients in this approximating relationship are not3

obtained from the 	";j(s) coe¢ cients as in equation (10), but from a separate projection4

of (k0")
2 on the space of included terms. The coe¢ cients 	";(k0)2;j(s) are chosen to get5

the best �t for (k0")
2 according to some measure. Given that the excluded terms, i.e., k36

and k4, are correlated with the included terms, these coe¢ cients will also capture some of7

the explanatory power of the higher-order excluded terms. The key implication of using8

equation (11) instead of equation (10) is that aggregation of equation (11) does not lead9

to an increase in the set of aggregate state variables.10

For I = 2 the numerical algorithm consists of the following steps. The variables11

on the grid are ["; k; a;Mu(1);Mu(2);Me(1);Me(2)]. With the use of equations (8) and12

(11), the error terms de�ned in equation (4) can be calculated given values for 	"(s) and13

	";(k0)2(s). The algorithm chooses those values for the coe¢ cients that minimize some14

objective function of the errors de�ned in equation (5).15

To get expressions for next period�s aggregate variables using explicit aggregation one16

has to break the in�nite regress at some point. One could break it at I = 2 as in the17

example above, but one also could break it at some higher level. For example, suppose18

again that the individual policy rule is approximated well with a second-order polynomial.19

One possibility would be to set I = 4 and approximate k0", (k
0
")
2, (k0")

3 and (k0")
4 using20

fourth-order polynomials. But an alternative would be to approximate k0" with a second-21

order polynomial as above, use equation (10), i.e., the exact expression given the policy22

rule for k0", to describe (k
0
")
2, and construct approximations for (k0")

3 and (k0")
4 using23

fourth-order polynomials.24

4 General formulation of the algorithm25

The keystone of the analysis in the last section is the individual policy rule for the level26

of the capital stock given in equation (7). In this section, we give a more general formu-27

lation of the algorithm and relax two properties that we used in the previous section. In28

particular, we no longer require (i) that the approximating function is constructed using1
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continuous di¤erentiable basis functions and (ii) that the left-hand side of the individual2

policy function is equal to the level of k.3

General basis functions. We start by relaxing the �rst assumption. The individual4

policy functions for k0u and k
0
e are given by5

k0" = 	";0(s) +
IX
i=1

	";i(s)Bi(k) ; " 2 fu; eg; (12)

where Bi(k) is the ith-order basis function. There are many di¤erent choices for the basis6

functions. For example, they could be monomials as in the previous section. Our proce-7

dure allows for non-di¤erentiable basis functions, as would be the case with B-splines.48

Note that the basis functions in equation (12) are functions of the endogenous individual9

state variables only. An advantage of the algorithm we propose is the link between the in-10

dividual policy functions and the included aggregate state variables, that is, each included11

basis function necessitates inclusion of its corresponding cross-sectional average as a state12

variable. For each basis function we need an auxiliary approximating relationship. That13

is, the complete set of approximating relationships would consist of equation (12) and14

Bj(k
0
") = 	";Bj(k0);0(s) +

IX
i=1

	";Bj(k0);i(s)Bi(k), for j 2 f1; � � � ; Ig and " 2 fu; eg (13)

In principle there is, thus, nothing that prevents the algorithm from being implemented15

when splines are used to approximate the individual policy function, which is useful for16

problems with occasionally binding constraints. In practice, using splines may not work17

well because I is typically high when splines are used, which implies that the number of18

included state variables and auxiliary approximating functions are high too. The latter is19

not that problematic, but a large set of state variables can make it very time consuming20

to solve the model. A solution to this dilemma is discussed next.1

4B-splines are simply a di¤erent way to express splines. For example, the basis functions of the linear

B-spline, that implements linear interpolation, are de�ned as (k � �j)=(�j+1 � �j) if �j � k � �j+1, as

(�j+2 � k)=(�j+2 � �j+1) if �j+1 � k � �j+2, and 0 otherwise.
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Using the level of k0 as the LHS variable. The individual policy rules for k0", like2

those in equation (7) or (12), ful�ll two roles. They are used to model the individuals�3

choices and they are used� after explicit aggregation� to forecast next period�s moments.54

The analysis above assumes that the same approximation is used to ful�ll both roles. Using5

the same policy function is attractive from a consistency point of view, but is not necessary6

from a numerical point of view. It may very well be the case that an accurate description7

of individual behavior requires a highly nonlinear functional form, but that a simpler8

functional can be used for aggregation, for example, because not too many agents face9

individual state variables in the nonlinear area of the policy function. We will refer to the10

policy rule that determines the choice of k0 in the individual problem as the individual11

policy rule, and to the policy rule for k0 used in the aggregation as the primary auxiliary12

policy rule. The restriction that the level of k0 must be the left-hand side variable only13

holds for the primary auxiliary policy rule. That is, one can use any individual policy rule14

as long as one also has an additional policy rule for the level of k0.15

In our implementation of the algorithm, we use piecewise-linear splines to approximate16

the individual policy rule,6 but use a linear approximation for the primary auxiliary policy17

rule. In particular, we use a �rst-order Taylor expansion of the individual policy rule to18

construct the primary auxiliary policy rule. With piecewise-linear splines, aggregating the19

�rst-order Taylor expansion boils down to simply evaluating the individual policy functions20

of agents with employment status " at the corresponding aggregate moments. That is,21

bK" = 	";0(s) +
IX
i=1

	";i(s)Bi(K") for " 2 fu; eg (14)

with s = [a;Ku;Ke]. That is, we simply evaluate the individual policy rule for agents22

with employment status " at the aggregate capital stock of agents with this employment23

status. Since the primary auxiliary individual policy rule is linear, we do not need any1

5The policy rules for (k0")
j , with j > 1, or Bj(k0"), with j � 1, are only used to forecast next period�s

moments.
6For each set of values of " and a, our policy rule is a three-dimensional linear spline in Ku, Ke, and k,

which means that as a function of k it is a linear spline with coe¢ cients that depend on Ku and Ke and,

of course, " and a.
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further auxiliary policy rules and using just the mean capital stocks Ku and Ke as state2

variables is su¢ cient.3

The reader may be concerned that using a linear primary auxiliary rule cannot lead4

to an accurate solution when the underlying law of motion is non-di¤erentiable, which is5

the case here for the policy rule of the unemployed. As discussed in section 6.1, we can6

get a solution for this model that is very accurate in almost all dimensions. To improve7

accuracy one could add more basis functions, which for our methodology means more8

state variables. As an alternative we discuss a simple bias correction in section 6.1 that9

can improve the aggregate policy rule given in (14), but does not increase the set of state10

variables.11

Perturbation procedures and the in�nite regress problem. Preston and Roca12

(2007) use perturbation procedures to solve models with heterogeneous agents and aggre-13

gate risk using standard perturbation techniques. In particular, they perturb the model14

around the point with no idiosyncratic and no aggregate uncertainty.7 This is a very15

innovative approach and quite di¤erent from the alternatives used in the literature and16

is also di¤erent from ours. There is one aspect, however, that the perturbation approach17

has in common with our algorithm. In the procedure of Preston and Roca (2007) and in18

ours there is a link between the individual policy rule and the included aggregate state19

variables. In particular, a linear solution requires the use of �rst-order moments and a20

second-order one requires the use of second-order moments. They do not discuss the in-21

�nite regress problem, but they su¤er from it in the same way we do. When using a22

second-order perturbation, the individual choice for k0 depends on second-order terms.23

Aggregation of this individual policy rule to obtain a law of motion for K 0 then implies1

7Obviously, the model has to be modi�ed because perturbation techniques cannot be used in the

presence of occasionally binding constraints. Preston and Roca (2007) use penalty functions to capture

the impact of borrowing constraints. It is an open question how accurate perturbation techniques are to

solve these models. Perturbation techniques have the advantage that they are computationally less costly

in the presence of many state variables. The policy functions obtained with perturbation techniques are

always polynomials in the state variables. The individual policy functions used for aggregation in our

approach only have to be polynomials in the individual state variables.
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that second-order moments are state variables. Next-period�s values of these second-order2

moments are integrals of (k0)2. Preston and Roca (2007) use a second-order approximation3

for this second-order term. But a second-order perturbation of a function squared is not4

as accurate as the square of a second-order approximation of the function itself. That is,5

like us, they use approximations that are less accurate for policy functions used to predict6

next period�s higher-order moments.7

Which moments to include as state variables? For our algorithm this question is8

equivalent to the question which primary auxiliary policy rule to use, because the shape9

of the primary auxiliary rules directly implies the set of moments one has to include.10

We consider this to be a salient feature of our procedure and an insight likely to be11

helpful in determining what moments to include in other algorithms too, even though12

these algorithms do not ascertain any link between the individual policy function used13

and the aggregate moments included.14

In the particular solution submitted to the comparison project, we use separate linear15

primary auxiliary policy rules for the employed and the unemployed agent. Consequently,16

Ku and Ke are used as state variables. An alternative would be to have one primary policy17

rule that is linear in the individual capital stock and the employment status. In this case18

only the aggregate capital stock, K, would be a state variable as is the case in Krusell and19

Smith (1998). If a second-order capital term is added to this auxiliary policy rule, then20

there would be� as in our speci�cation� two aggregate moments included in the set of21

state variables. What is better depends on whether the marginal propensity to save varies22

more with the wealth level or with the employment status. In this particular model, there23

is very little variation in the marginal propensity to save in either direction. But this24

discussion illustrates the usefulness of the link between the properties of the individual1

policy function and the included set of aggregate state variables that is brought to light2

by our algorithm.83

8For instance, in overlapping-generations models, the marginal propensity to save could very well vary

more with age than with wealth. If the researcher faces the choice between including either lower-order

moments that condition on age or additional higher-order moments that do not, then the logic of our
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5 Solving the model without aggregate uncertainty4

In this section, we discuss the algorithm when it is used to solve the model without5

aggregate uncertainty. There are two reasons to do this. First, it illustrates the simplicity6

of our algorithm and brings to light the advantages relative to alternative algorithms.7

Second, we want to make clear why our algorithm can solve models with heterogeneous8

agents without generating a complete cross-sectional distribution by simulating a panel9

as is done by Krusell and Smith (1998) and without parameterizing the distribution as is10

done by Algan, Allais, and den Haan (2008, 2009) and Reiter (2009).11

If there is no aggregate uncertainty, then the problem boils down to �nding a (constant)12

value for aggregate capital, K, such that the individual policy rules corresponding to the13

implied prices, r = �K��1 and w = (1 � �)K�, generate an ergodic distribution for k"14

with a cross-sectional mean equal to K.9 The standard procedure to solve this problem15

consists of the following steps. First, given a value for K one solves for the individual16

policy functions at the implied prices. Second, given these policy rules one calculates the17

ergodic distribution and its cross-sectional mean. A non-linear equation solver can be used18

to �nd the �xed point.19

With our algorithm, we can solve for the equilibrium value ofK directly using standard20

projection techniques. The idea is as follows. We use Ith-order polynomials to approximate21

k0u and k0e. In the model without aggregate uncertainty, there are no aggregate state22

variables, which means that the value of I does not a¤ect the dimension of the set of state23

variables and can, thus, be chosen to take on a high value. The algorithm consists of the24

following steps.25

1. Start with guesses for the values of Ku =Mu(1) and Ke =Me(1) and with guesses26

for the values of Mu(j) and Me(j) for j 2 f2; � � � ; Ig.27

2. Using the guesses for Ku and Ke solve for the coe¢ cients of the individual policy1

rules, including the auxiliary policy rules: 	";j for " 2 fu; eg and j 2 f1; � � � Ig.2

algorithm imiplies that the �rst option makes more sense.
9We assume that the aggregate labor supply is equal to 1.
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This step is as easy as in the standard problem, except that one also has to obtain3

approximating functions for (k0")
j . With most procedures one could vectorize this4

step, so that computationally it is not much more expensive to solve for the additional5

policy functions.6

3. Standard procedures would obtain new values forMu(j) andMe(j) for j 2 f1; � � �Jg7

by simulating or by calculating the �xed point of the dynamic system with the cross-8

sectional distribution described by a histogram. With our algorithm, new values9

follow directly from the individual policy functions using as inputs the previous10

guesses for all the cross-sectional averages.11

4. Iterate until the values have converged.12

With these steps, we describe the algorithm as an iterative procedure. In most cases13

it is more e¢ cient to think of this as a nonlinear system in the values of M"(j) and to use14

an equation solver.1015

The algorithm never simulates and does not parameterize the cross-sectional distribu-16

tion. Consequently, the algorithm is much faster than existing algorithms and is potentially17

very useful for estimation. Although the algorithm never calculates a cross-sectional dis-18

tribution, it does calculate unconditional cross-sectional moments, but only those that are19

aggregate state variables. These unconditional cross-sectional moments are exactly that20

part of the distribution that is needed to calculate next period�s values of Ku and Ke by21

explicitly aggregating the individual policy functions.22

6 Implementation and improvements1

In this section, we describe a bias correction procedure that is useful in improving the2

algorithm in the sense of getting an accurate solution at a lower computational cost. We3

also provide more details on how to implement the algorithm.4

10 If one solves this system by iterating one may have to use dampening, that is, take a weighted average

between the new and the old values of M"(j) at each iteration.
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6.1 State space reduction and bias correction5

An advantage of the algorithm is that there is a tight link between the individual policy6

rules and the aggregate laws of motions. Although this link is desirable from a consistency7

point of view, it makes the algorithm expensive when the individual policy function is8

complex. Suppose that an accurate description of the individual policy rule requires an9

approximation with many basis functions, but that this complexity is not important for10

the aggregate law of motion. As pointed out above, one could then use two individual11

policy rules. The �rst is used to describe individual behavior and the second, a simpler12

auxiliary policy rule, is used as the basis for predicting the aggregates. If the auxiliary13

policy rule is a simpler policy rule, then it is at least to some extent misspeci�ed. For14

example, the linear auxiliary policy rule used above misses the convex behavior induced15

by the borrowing constraint. This misspeci�cation of the auxiliary individual policy rule16

causes a bias in the aggregate law of motion.17

In terms of forecasting next period�s aggregate capital stock, this bias turns out to be18

very small, but the bias is systematic and errors accumulate over time and result in more19

noticeable errors. When we assess the one-period ahead predictability of the aggregate20

law of motion that is implied by the linear primary auxiliary rule, then we �nd that the21

R2 is equal to 0.999973 and 0.9999970 for Ku and Ke, respectively. Thus, the values of the22

R2 suggest that our solution is extremely accurate. As pointed out in den Haan (2009),23

however, the R2 is a very weak accuracy test. A much better accuracy test is to compare a24

long series of the aggregates from the simulated panel of individual observations with the25

corresponding series generated separately by the aggregate law of motion. This procedure26

would detect accumulation of small systematic mistakes. The results of the R2 are indeed27

misleading; with this more powerful accuracy test we �nd that the maximum (average)28

errors are equal to 1.56% (0.98%) and 1.33% (0.90%) for the aggregate capital stock of1

the unemployed and the employed, respectively. It is always di¢ cult to determine when2

numerical errors are too high, but relative to typical standards, these errors are quite3

large.11 Moreover, as shown below, they can be improved upon substantially.4

11See den Haan (2009) for a further discussion.
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To reduce this error we could make the auxiliary policy rule more complex, but this5

would enlarge the state space. Instead we recommend the following simple procedure.6

The idea is to calculate the bias in the model without aggregate uncertainty and then use7

this value to adjust the aggregate law of motion in the model with aggregate uncertainty.8

Solving the model without aggregate uncertainty accurately can be done quickly, so this9

does not add substantially to the computational burden. Let ~K" and
b~K" stand for the10

beginning and end-of-period values for the (constant) aggregate capital stocks of workers11

with employment status " that are obtained from a very accurate solution of the model12

without aggregate uncertainty.12 ;13 The aggregate law of motion implied by the auxiliary13

policy rule is given by14 bK" = 	";0(M) + 	";1(M)K": (15)

The bias correction term, �", for the aggregate law of motion of K" is equal to the15

di¤erence between b~K" and the values implied by the approximating aggregate law of16

motion. That is,17

�" =
b~K" �	";0( ~M)�	";1( ~M) ~K": (16)

Adding this error correction to the solution of the model with aggregate uncertainty re-18

duces the maximum (average) errors from 1.56% (0.98%) and 1.33% (0.90%) to 0.44%19

(0.12%) and 0.34% (0.12%), a quite substantial improvement.20

In �gures 1 and 2, we compare the realizations ofKu andKe according to the aggregate21

law of motion (solid lines) with those values that are implied by the individual policy rules22

in a simulated panel (dotted lines). The two di¤erent aggregates are based on the same1

time series of realizations for a, but are otherwise generated independently. Figure 1 plots2

the series when no bias correction is used and �gure 2 when it is used. We chose that part3

of the sample where the largest di¤erences between the two series occur.4

12 ~K" can be obtained from
b~K" using only the exogenously given transition probabilities using equations

like the ones given in (6a) and (6b).
13To solve the model without aggregate uncertainty, we follow Young (2009) and construct a law of motion

for the cross-sectional distribution using a very �ne histogram. This law of motion can be represented as a

linear system in the probabilities on the nodes. The ergodic distribution is then the normalized eigenvector

corresponding to the unit eigenvalue.
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From the �gures we can make the following observations. First, without the bias5

correction the aggregate law of motion follows the movements of the simulated aggregates6

(that are implied by the individual policy rules) quite closely, but there is a systematic7

bias that widens during severe recessions. This despite having aggregate laws of motion8

with R2s in excess of 0.99997. Second, there is virtually no systematic bias when the bias9

correction is applied.10

The numerical solution generated with the procedure that uses the bias correction is11

much better in terms of passing the accuracy test proposed in den Haan (2009). However,12

in virtually all other properties of the model except the mean it is extremely similar to13

the solution obtained without the bias correction. That is, although the R2 is a weak14

test, the test proposed by den Haan (2009) seems very demanding in that algorithms that15

generate solutions that are accurate in almost all aspects can still do poorly in terms of16

this accuracy test.17

6.2 Details of the implementation18

We use the procedure of endogenous grid point proposed in Carroll (2006) and, thus,19

specify nodes for k0. We use 250 nodes in the interval [0; 250]. To get more nodes close to20

the constraint we use equidistant nodes for ln(1 + k0). For Ku and Ke we use 12 linearly21

spaced nodes in the intervals [33; 42:5] and [35; 43:5], respectively. For each set of values22

for " and a, the policy function is then the three-dimensional interpolation of the policy23

choices at the nodes of the (k;Ku;Ke) grid. The coe¢ cients of the policy rules are solved24

for by time iteration.25

7 Other models1

If the rental rate of capital and the wage rate are given by the standard expressions given2

in equation (4), then the aggregate demand for capital and labor by �rms is exactly equal3

to the corresponding supply of each input. That is, even if numerical approximation errors4

lead to a errors in the aggregate capital stock, market equilibrium still holds at any point5

17



in the state space and, thus, also during a simulation.146

In several other models, it may not be that straightforward to impose market equilib-7

rium. The most common example in which this is the case is a bond economy. In this8

section, we �rst show how our algorithm can be used to solve a bond economy and second9

we give a particular implementation so that one can always ensure that markets clear10

along the simulated time path. Consider a simple endowment economy in which agents11

can smooth consumption by trading in one and two-period risk-free bonds. To simplify12

the discussion, we assume that there are no borrowing constraints but that instead there is13

a penalty function that limits agent�s short position. The Euler equations for this problem14

are given by15

q1t
ci;t

= �Et
1

ci;t+1
+ p(b1i;t+1) (17)

q2t
ci;t

= �Et
q1t+1
ci;t+1

+ p(b2i;t+1) (18)

and the budget constraint by16

ci;t + q
1
t b
1
i;t+1 + q

2
t b
2
i;t+1 = yi;t + b

1
t + q

1
t b
2
t ; (19)

where qjt is the price of a zero-coupon j-period bond that pays one unit, yi;t is the endow-17

ment of agent i, bji;t are the bond holdings of agent i, and p(�) a penalty term.15 Let si;t1

be the set of individual state variables and Mt the set of aggregate state variables.2

Some authors propose to include the bond prices in Mt to ensure that one can always3

clear markets. We prefer to only include predetermined variables in the set of state4

variables and instead choose to parameterize bji;t+1 + q
j
t (for j = 1; 2). Thus,5

b1i;t+1 + q
1
t = d1(si;t;mt) (20)

14 It is important that market equilibrium holds at each point in a simulation. The reason is that

numerical errors are unlikely to be zero on average. This means that for a long enough sample errors will

accumulate to large numbers and then it is not clear how to interpret the simulated data.
15For simplicity the penalty of having low bond levels enters directly the utility function so that the

derivative of the penalty function only enters the Euler equation.

18



and6

b2i;t+1 + q
2
t = d2(si;t;mt) (21)

That is, instead of specifying an approximation for b1i;t+1 and b
2
i;t+1 we specify an approx-7

imation for a particular combination of bji;t+1 and q
j
t . If d

j(�) satis�es the rules that are8

required for an auxiliary policy rule, then we can explicitly aggregate equations (20) and9

(21) and get values of the two bond prices that ensure market equilibrium at any point in10

the state space (or along a simulation). That is,11 Z
dj(si;t;mt)di = 0 + q

j
t : (22)

Individual bond holdings can then be solved from (20) and (21) and consumption from12

the budget constraint.13
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Figure 1: Simulated values of Ku and Ke without bias correction
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Notes: This �gure plots the aggregate capital stocks of the employed and the unemployed
from the simulated panel and the corresponding series generated by the aggregate law of
motion when no bias correction is implemented.
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Figure 2: Simulated values of Ku and Ke with bias correction
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Notes: This �gure plots the aggregate capital stocks of the employed and the unemployed
from the simulated panel and the corresponding series generated by the aggregate law of
motion when the bias correction is implemented.

22


