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Abstract

Constructing empirical specifications for structural economic models is difficult, if not impos-

sible. As shown in this paper, even minor misspecifications may lead to large distortions for

parameter estimates and implied model properties. We propose a novel concept, namely an

agnostic structural disturbance (ASD), that can be used to both detect and correct for mis-

specification of structural disturbances and is easy to implement. While agnostic in nature,

the estimated coefficients and associated impulse response functions of these ASDs allow us

to give them an economic interpretation. We adopt the methodology to the Smets-Wouters

model and formulate an improved risk-premium and an improved investment-specific pro-

ductivity disturbance.
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1. Introduction1

Exogenous random shocks are the lifeblood of modern macroeconomic business cycle2

models. They enter the model as innovations to structural disturbances that affect key3

aspects of the model. Recent generations of business cycle models include a multitude of4

structural disturbances. Structural disturbances impose restrictions on model equations and,5
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thus, on the model’s solutions. Therefore, each structural disturbance has to enter each6

model equation correctly. This is a concern, since we often do not have independent evidence7

on how structural disturbances should affect the system. For example, should a risk-premium8

disturbance affect all Euler equations or only some? Is it correct to assume that structural9

disturbances are uncorrelated as is commonly done? Chari et al. (2007) propose “wedges”10

as alternatives to standard structural disturbances, but wedges also impose restrictions.11

The contributions of this paper are threefold. First, we propose the agnostic structural12

disturbance (ASD) as an alternative type of structural disturbance. The procedure simply in-13

volves adding structural disturbances with associated reduced-form coefficients to each model14

equation or alternatively to each policy rule. In contrast to regular structural disturbances15

and wedges, ASDs impose no additional restrictions on policy rules. Nevertheless, they are16

different from measurement error, because they are structural and propagate through the17

system like regular structural disturbances. The procedure of Cúrdia and Reis (2012) shares18

with ours the ability to deal with correlated structural disturbances, but their disturbances19

still impose all the restrictions on model equations of regular structural disturbances.20

Our ASD procedure can be used to test whether regular structural disturbances are cor-21

rectly specified and to enrich an empirical specification by adding ASDs as additional struc-22

tural disturbances. Using Monte Carlo experiments, we document that the ASD procedure23

is capable of detecting and correcting for misspecification in samples of typical size.24

The second contribution of our paper is to test whether the structural disturbances of the25

model in Smets and Wouters (2007) (SW) are correctly specified using the same US postwar26

data set. We find that the risk-premium and the investment-specific productivity disturbance27

are not. We use our procedure to improve on the SW empirical specification. Our preferred28

specification (based on marginal likelihood considerations) has three ASDs and excludes the29

SW risk-premium and the SW investment-specific disturbance.30

Although the ASD procedure itself does not rely on any economic reasoning, the estima-31

tion results – both the associated coefficients and their impulse response functions (IRFs)32

– may reveal a lot about the type of structural disturbance the data has identified. For33

example, we interpret one of the ASDs in our adjusted empirical specification of the SW34
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model as an “investment-modernization” disturbance, because it stimulates investment, but35

at the same time leads to faster depreciation of the existing capital stock. The second ASD36

of our empirical model has features in common with both a risk-premium and a preference37

disturbance but is also different from both. Finally, the third ASD captures increases in the38

wage mark-up disturbance that are associated with an increase in the utilized capital stock.39

The third contribution of our paper consists of showing that minor misspecifications of40

the empirical model regarding structural disturbances can easily lead to large distortions for41

parameter estimates and model properties, such as business cycle statistics and IRFs. We42

document that ASDs can alleviate these problems.43

The next section explains the ASD procedure. Section 3 documents the ability of ASDs44

to detect and correct for misspecification using Monte Carlo experiments for a typical appli-45

cation. Section 4 discusses the results when our procedure is applied to the SW model on46

US data. Section 5 concludes.47

2. Agnostic Structural Disturbances48

We use a simple business cycle model to explain what ASDs are and how they can be used49

for building theoretical models that one wants to bring to the data. Appendix A, provides50

a general formulation.51

2.1. Model52

Agents’ choices for consumption, Ct, investment, It, and capital, Kt are the outcomes of

the following maximization problem:

max
{Ct+j ,It+j ,Kt+j}∞j=0

∞∑
j=0

C1−γ
t+j − 1

1− γ
(1)

s.t.

eεa,tKα
t−1 = Ct + It + eεg,tG, (2)

Kt = (1− δ)Kt−1 + Ite
εi,t . (3)
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This model contains three exogenous random variables. Using the terminology of Chari

et al. (2007), these are an efficiency wedge, εa,t, an investment wedge, εi,t, and a government

consumption wedge, εg,t. Consistent with the literature, the variables are generated by the

following stochastic process:

εm,t = ρmεm,t−1 + σmηm,t,m ∈ {a, i, g}, (4)

Et[ηm,t+1] = 0,Et[η2
m,t+1] = 1, and Et[ηm,t+1ηm∗,t+1] = 0 for m 6= m∗. (5)

This economy is represented with the following set of linearized first-order conditions:1

Et[ct+1 − ct] =
1− β(1− δ)

γ
(ρaεa,t + (α− 1)kt) +

1− β(1− δ)ρi
γ

εi,t, (6a)

Y (εa,t + αkt−1) = I it + C ct +Gεg,t, (6b)

kt = (1− δ)kt−1 +
I

K
it +

I

K
εi,t, (6c)

where lower case letters denote variables expressed as a percentage difference from their53

steady state values and X indicates the steady state value of variable Xt.54

The random disturbances can be interpreted literally as regular exogenous structural55

disturbances affecting the economy. As illustrated in Chari et al. (2007), however, these56

wedges can also be seen as manifestations of frictions in more elaborate models or as the part57

that is not modeled explicitly.2 Although they are somewhat general, these three wedges do58

impose restrictions on the model and they differ from each other exactly because of these59

restrictions. First, none of the wedges appear in all equations, which is typical. Second, the60

model imposes cross-equation restrictions that depend on the structural parameter values of61

the model.362

1Throughout this paper, we focus on linearized systems and treat those as the true data generating
process. We do this because most structural empirical macroeconomic models are based on such systems. In
principle, one could include ASDs in nonlinear systems as well.

2Moreover, a wedge can be given different interpretations. For example, εg,t could be a fixed cost to
production or it could be government spending that agents do not value.

3Inoue et al. (2015) provide a formal analysis for using wedges to detect and identify misspecification.
Their wedges also only appear in a limited set of equations and, thus, also do impose parameter restrictions.
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The three policy functions for this model can be expressed as follows.

ct = Ac(Ψ)kt−1 +Bc,a(Ψ)εa,t +Bc,i(Ψ)εi,t +Bc,g(Ψ)εg,t, (7a)

it = Ai(Ψ)kt−1 +Bi,a(Ψ)εa,t +Bi,i(Ψ)εi,t +Bi,g(Ψ)εg,t, (7b)

kt = Ak(Ψ)kt−1 +Bk,a(Ψ)εa,t +Bk,i(Ψ)εi,t +Bk,g(Ψ)εg,t, (7c)

where Ψ is a vector containing the structural parameters. This system also makes clear that63

wedges impose cross-equation restrictions. The Aj(Ψ) and Bj,m(Ψ) coefficients are nonlinear64

functions of the structural parameters, Ψ.4 In linear frameworks, disturbances only differ in65

how they affect the economy on impact. After impact they propagate through the economy66

in the same way, as described by the Ajs.67

Possible misspecification Misspecification occurs in many different forms. One could68

miss a particular disturbance or include one that should not be included. Another possibility69

is that a structural disturbance is not incorporated correctly in all model equations. This70

is more likely to occur in larger models. However, misspecification is a also possible in the71

model at hand which has just three equations. For example, the government expenditure72

disturbance could very well affect the utility of the agent and/or the production function.73

Also, the investment disturbance may affect the depreciation rate.5 Another possible mis-74

specification is that, contrary to common practice, the structural disturbances are correlated75

with each other. Using a New Keynesian business cycle model, Cúrdia and Reis (2012) docu-76

ment that structural disturbances are correlated and ignoring this correlation leads to wrong77

inference.78

2.2. Introducing Agnostic Structural Disturbances79

ASDs can replace regular structural disturbances or they can be added to the existing

set. Adding structural disturbances to model equations is incredibly simple: Each ASD is

4See Campbell (1998) for the derivation and discussion of such policy functions.
5In Section 4, we provide empirical evidence in support for this possibility.
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added to each equation with a reduced form coefficient. When we add two ASDs, denoted

ε̃A,t and ε̃B,t, to the model of this section, then we get6

Et[ct+1 − ct] =
1− β(1− δ)

γ
(α− 1)kt + [Υ̃1,AΥ̃1,B][ε̃A,tε̃B,t]

′, (8a)

Y αkt−1 = Iit + Cct + [Υ̃2,AΥ̃2,B][ε̃A,tε̃B,t]
′, (8b)

kt = (1− δ)kt−1 +
I

K
it + [Υ̃3,AΥ̃3,B][ε̃A,tε̃B,t]

′, (8c)

[ε̃A,t, ε̃B,t]
′ = ε̃t = Pε̃t−1 + η̃t. (8d)

Each ASD is allowed to enter each equation without any restrictions. Moreover, they enter80

the system in a symmetric manner. A priori, there is, thus, no difference between the different81

ASDs. It is not restrictive to exclude future realizations of the ASDs from the equations.82

What matters is the expectation of these variables and this is captured by the current-period83

values as long as the ASDs are first-order Markov processes.84

The vector η̃t contains the ASD innovations. Their standard deviations can be normalized

to 1, since the Υ̃s are reduced-form coefficients. ASD innovations are assumed to be uncor-

related, but the disturbances can be correlated because P does not have to be a diagonal

matrix.7 Thus, the vector with the ASD innovations, η̃t, satisfies

Et[η̃t+1] = 0 and Et[η̃t+1η̃
′
t+1] = I2. (9)

The policy functions for this model with two ASDs can be expressed as follows.

ct = Ac(Ψ)kt−1 + B̃c,A(Ψ)ε̃A,t + B̃c,B(Ψ)ε̃B,t, (10a)

it = Ai(Ψ)kt−1 + B̃i,A(Ψ)ε̃A,t + B̃i,B(Ψ)ε̃B,t, (10b)

kt = Ak(Ψ)kt−1 + B̃k,A(Ψ)ε̃A,t + B̃k,B(Ψ)ε̃B,t, (10c)

6We have left out the three regular structural disturbances to keep the equations concise.
7Correlated innovations can be described by a combination of uncorrelated innovations. Such a setup is

fine for agnostic disturbances.
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where Ac(Ψ) has the standard solution which does not depend on whether the disturbances

are regular or ASDs. The coefficients in these equations are equal to

B̃c,m =
Υ̃1,m + (Λ− Ac(Ψ))

(
Υ̃3,m − Υ̃2,m

K

)
(Λ− Ac(Ψ))C

K
+ ρ− 1

, (11a)

B̃i,,m = −CB̃c,,m + Υ̃2,m

I
, (11b)

B̃k,m =
I

K
B̃i,m + Υ̃3,m, (11c)

Λ =
1− β(1− δ)

γ
(α− 1). (11d)

The expressions for the B̃j,m(Ψ) coefficients illustrate the structural nature of ASDs because85

they depend both on the reduced-form Υ̃ coefficients and the structural parameters of the86

model, Ψ.87

Although the B̃j,m(Ψ) coefficients depend on Ψ, their values are fully unrestricted. That

is, B̃c,m(Ψ), B̃i,m(Ψ), and B̃k,m(Ψ) can take on any set of values by appropriate choice of

Υ̃1,m(Ψ), Υ̃2,m(Ψ), and Υ̃3,m(Ψ). Since the B̃j,m(Ψ) coefficients are unrestricted, an alterna-

tive way to implement ASDs is to add them directly to the policy functions with reduced-form

coefficients, that is

ct = Ac(Ψ)kt−1 + B̃c,Aε̃A,t + B̃c,B ε̃B,t, (12a)

it = Ai(Ψ)kt−1 + B̃i,Aε̃A,t + B̃i,B ε̃B,t, (12b)

kt = Ak(Ψ)kt−1 + B̃k,Aε̃A,t + B̃k,B ε̃B,t, (12c)

This illustrates that the ASD procedure adds to the policy functions an unobserved compo-88

nents block. Describing time-series fully or partly with unobserved components has a rich89

history in macroeconomics.8 This paper does more than that. Section 4 illustrates how ASDs90

can be used as a formal test of the correct specification of regular structural disturbances91

and how ASDs can be used to improve upon the specification of structural disturbances.92

8See, for example, Stock and Watson (1999).
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The data provide information about the coefficients of the unobserved components block,93

i.e., the B̃ coefficients. However, to give an economically meaningful interpretation of the94

ASDs the Υ̃ coefficients are important. The link between the B̃ and the Υ̃ coefficients will95

be discussed in more detail in Section 2.4.96

2.3. ASDs and misspecification97

ASDs can detect different types of misspecification. The procedure will indicate an addi-98

tional structural disturbance is needed if adding an ASD improves model fit with the proper99

adjustment for the additional parameters introduced by the ASD. If replacing a regular100

structural disturbance by an ASD leads to improved model fit (adjusted for the number of101

parameters), then this indicates that the regular structural disturbance in question either102

needs to be modified or should not play a role in the empirical model.103

Cúrdia and Reis (2012) test whether regular structural disturbances are dynamically cor-104

related, that is, the innovations are orthogonal but lagged values of disturbances can affect105

current values of other disturbances. They find empirical evidence for such dynamic corre-106

lation.9 ASDs can represent the role of correlated disturbances even if P is diagonal, which107

means that the ASDs are uncorrelated since the innovations of ASDs are assumed to be108

orthogonal. For example, suppose that both the efficiency wedge, εa,t and the investment109

wedge, εi,t are driven by a common component and an idiosyncratic component. Then an110

empirical model with three ASDs can capture the role of the three different random compo-111

nents. One vector of Υ̃ coefficients would capture the effect of the common component on112

the equations which would combine the effects of the εa,t and the εi,t disturbance. The other113

two Υ̃ vectors would capture the effects of the idiosyncratic components which would be the114

separate effect of the wedges.115

ASDs can also capture measurement error. The ASD system as specified in Equation (8)116

9Galizia (2015) shows that correlated estimates of the innovations of structural disturbances can be a
sign of model misspecification. The paper demonstrates that the cross-correlations distorts the estimated
variance decomposition of the model and proposes a method to mitigate this problem. As we show below,
ASDs also help with getting a lower cross-correlation between the estimated innovations.
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can capture measurement error in the control variables ct and it.
10 To correctly represent117

measurement error in the state variable, kt one would have to add lagged ASD values to118

the system.11 Although ASDs are general enough to encompass measurement error, typical119

ASDs differ in a fundamental way from measurement error. In general, ASDs are structural120

disturbances and propagate through the system like regular structural disturbances, that is,121

according to the A(Ψ) coefficients. Measurement error does not.12
122

ASDs are designed to deal with misspecification of structural disturbances that would123

distort the B(Ψ) coefficients. Is the ASD procedure also able to deal with misspecification124

that affects the A(Ψ) coefficients? Suppose one compares an empirical model with only125

one ASD with one that contains one regular structural disturbance and this disturbance126

is correctly specified. Moreover, both use Â(Ψ) which differs from the true A(Ψ). The127

ASD specification can still fully represent the correct policy function as long as there is a128

Ψ̂ such that Â(Ψ̂) = A(Ψ). The specification with the regular structural disturbance faces129

a dilemma. With Ψ̂ it gets the A coefficient right, but the B coefficient wrong because it130

is improbable that B(Ψ̂) = B(Ψ). If it chooses the correct value for Ψ then it gets B right131

but A wrong. The flexibility of the ASD procedure makes it more likely it gets the policy132

function coefficients right, not only in terms of the B̃, but also in terms of the A coefficients.133

However, the example shows that this may come at the cost of larger distortions in estimates134

of Ψ if the ASD replaces a correctly specified regular structural disturbance.135

Although our procedure can potentially alleviate misspecification of the A(Ψ) matrix, we136

think of our procedure as a first step to understand where the model needs improvement not137

as a complete model evaluation.138

10To see this simply replace ct with cobs,t + εt in Equation (6). After taking expectations one is left with
just the current-value of the measurement error term, εt.

11Adding lagged values of the ASDs will increase the types of misspecification ASDs can detect. For
example, this richer ASD specification could detect whether the period-t value of the productivity disturbance
is known in period t, as is commonly assumed, or is known in period t − 1, that is, when there are “news”
shocks.

12When ε̃A,t picks up measurement error in ct or it, then the B̃k,A coefficient associated with ε̃A,t would
be equal to zero. When an ASD in the enhanced system with lagged ASDs picks up measurement error in
kt, then there is also a set of restrictions such that the A(Ψ) coefficients do not matter for the propagation
of ε̃A,t.
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2.4. Identification139

The data provide information about the A and the B coefficients. To understand whether140

the A and the B coefficients can be estimated it is useful to think of the model variables as141

MA processes. With M ASDs, ct is a sum of M MA processes. The parameters of each MA142

process depend on: Ac(Ψ), Ak(Ψ), B̃c,m, and B̃k,m,m ∈ {1, · · · ,M}. Thus if one uses just143

ct as an observable, then one can estimate these A and B̃ coefficients, but one would not be144

able to estimate the ASD coefficient in the investment policy function, B̃i,m. If one replaces145

regular structural disturbances with ASDs, then it may be harder to identify Ψ. That turns146

out not to be an issue in our empirical application presented in Section 4.147

The As and B̃s determine the policy functions and moment properties. These may provide148

some information on the nature of the ASD. The Υ̃s indicate how ASD enters each and every149

equation. In the empirical application in Section 4, we find that knowing the Υ̃s is especially150

useful for interpreting the different ASDs. So the question arises whether knowing the B̃s is151

enough to determine the Υ̃s. Equation (11) makes clear that knowing B̃c,m, B̃i,m, and B̃k,m152

is necessary but not sufficient to determine Υ̃1,m, Υ̃2,m, and Υ̃3,m.13 In addition, one would153

need certain combinations of the structural parameters.14
154

2.5. ASDs versus DSGE-VARs155

Ireland (2004) and Del Negro et al. (2007) combine a DSGE model with a reduced-form156

VAR that contains the observables. There are several key differences between these two157

approaches and ours.158

The DSGE-VAR specification is best compared with the system given in Equation (12)159

which adds ASDs to the policy functions. However, an advantage of the ASD procedure is160

that one can also obtain the specification given in Equation (8) that determines how the161

disturbances affect model equations. This knowledge is helpful in interpreting the nature of162

13To estimate all three B̃ coefficients one would need data on both consumption and investment.
14For example, the following expression would need to be identified: (Λ−Ac(Ψ))

(Λ−Ac(Ψ)) C
K

+ρ−1
.
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the ASDs as shown in Section 4. This cannot be done with the DSGE-VAR approach.163

The ASD approach focuses on a particular type of misspecification, which allows it to164

use aspects of the model that are assumed to be not affected by the misspecification, namely165

A(Ψ). The DSGE-VAR approach is more ambitious and also directly considers misspeci-166

fication of A(Ψ). Introducing a VAR into the empirical model means that the number of167

disturbances necessarily increases by a number equal to the number of variables in the VAR.168

Moreover, adding a VAR introduces many more parameters unless the number of observables169

is small. By contrast, our procedure allows for a more parsimonious approach and could con-170

sist of adding just one new disturbance or replacing one regular structural disturbance with171

an agnostic structural disturbance.172

These differences imply that our approach is more efficient in terms of the number of173

parameters that it has to estimate.15 The price of parsimony is that our procedure is not174

designed to detect misspecification unrelated to structural disturbances, that is, misspecifica-175

tion associated with restrictions imposed by A(Ψ). However, as discussed above the flexibility176

of our procedure may still alleviate misspecification of A(Ψ). The DSGE-VAR approach ex-177

plicitly allows misspecification in A(Ψ). However, Chari et al. (2008) point out that the VAR178

with a finite number of lags that does not contain all the model’s state variables is likely179

to be misspecified. This means that the DSGE-VAR approach cannot deal with all possible180

misspecifications either.181

Another difference emerges as the sample size goes to infinity. With the DSGE-VAR182

approach one has two “competing” empirical specifications, a DSGE model and a VAR.183

Since every DSGE suffers from at least some minor misspecification, one can expect the VAR184

to fully take over as the sample size goes to infinity. If that happens, then one is left with185

a reduced-form model. This will never happen with our approach, since the propagation of186

state variables will always be determined by A(Ψ).187

15For example, for the popular DSGE model of Smets and Wouters (2007) with 7 observables, a VAR with
4 lags would mean estimating 204 additional coefficients. As discussed in Section 4, the implementation of
our procedure for this model means estimating twelve more parameters.
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3. Small-Sample Monte Carlo experiments188

In this section, we use two small-sample Monte Carlo experiments to demonstrate that189

ASDs can be used to detect and correct for misspecification in a typical empirical application.190

As a byproduct, it is shown that the consequences of minor misspecifications in modeling the191

regular structural disturbances can lead to large distortions in terms of parameter estimates192

deviating from their true values. Each experiment consists of 1,000 replications. Additional193

details and results are discussed in Appendix C.194

3.1. True model and empirical specifications.195

We use the New Keynesian model of Smets and Wouters (2007), the workhorse model of196

empirical business cycle analysis, to generate the data for each Monte Carlo replication.197

The misspecification of the empirical model. The original SW model has seven exoge-198

nous random variables. Those are a TFP disturbance, εa,t, a risk-premium disturbance, εb,t,199

a government spending disturbance, εg,t, an investment-specific disturbance, εi,t, a monetary200

policy disturbance, εr,t, a price mark-up disturbance, εp,t, and a wage mark-up disturbance,201

εw,t. We leave out one of these seven disturbances when generating data for our misspec-202

ification experiments. The empirical specification also leaves out one disturbance, but not203

the right one. Every other aspect of the empirical model is correctly specified, including204

functional forms, specification of the processes for the exogenous random variables, and the205

values of the parameters that are not estimated.206

These are computationally expensive exercises and we only discuss two of the possible207

forty-two combinations in detail in this section. In the first Monte Carlo experiment, the208

true dgp does not include the monetary policy disturbance, but the empirical model leaves209

out the investment disturbance instead. In the second disturbance, the empirical model also210

leaves out the investment disturbance, but it differs from the first in that the true dgp does211

not include the TFP disturbance. In Appendix D, we abstract from small-sampling noise212

and discuss all forty-two experiments in detail. The appendix also shows that distortions in213
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parameter estimates carry over to implied model properties and explains why we chose these214

two experiments for this section’s Monte Carlo experiments.215

Is this a “minor” misspecification? When generating the data, we adjust the standard216

deviation of the disturbance that is incorrectly excluded from the empirical specification to217

ensure that it is responsible for at most 10% of the volatility for any of the six observables218

used in the estimation. This reduces the quantitative importance of the misspecification.219

One could argue that a misspecification is only minor if one would not detect it in a220

typical data set using some model selection criterion such as the marginal likelihood. This is221

a very strict requirement. Comparing a misspecified model with the true one requires that222

researchers are aware of the correct specification and test their empirical model against it.223

Since structural disturbances can enter models in many different ways, researchers may not224

consider the correct one even if they consider several alternatives. Nevertheless, we implement225

this test adopting the Bayesian estimation methodology used in Smets and Wouters (2007)226

with the same priors. Using the marginal data density, the misspecified specification is227

preferred over the true specification in 17% and 47% of the generated samples for the first228

and the second Monte Carlo experiment, respectively.229

Is this a likely misspecification? We believe that this type of misspecification is likely230

to be important in practice even if one includes a large set of structural disturbances. The231

first reason is that having a large set does not necessarily imply one includes all the true232

disturbances. Moreover, one does not only need to include all true disturbances, each dis-233

turbance has to enter each model equation correctly. For example, a TFP disturbance is234

typically modeled as a labor-augmenting productivity shock, but productivity changes could235

affect the production function differently. Moreover, TFP may also affect other aspects of236

the production process such as the depreciation rate. Moreover, one could argue, that this237

misspecification is not that likely for the analysis in Smets and Wouters (2007), since SW238

was preceded by years of empirical analysis by many authors. In Section 4, however, we239

document that we clearly reject the null that two of the included structural disturbances are240
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correctly specified.241

Observables and sample size. The set of observables used in SW consists of employment,242

the federal funds rate, the inflation rate, GDP, consumption, investment, and the real wage243

rate. We exclude the real wage rate so we have the same number of observables as structural244

disturbances which is consistent with the empirical exercise in SW. We use a sample of typical245

length, namely 156, which is the same as the number of observations used to estimate the246

model in Smets and Wouters (2007).247

Estimation procedure. DSGE models are typically estimated with Bayesian techniques,248

which means that the estimation outcome is a weighted combination of the prior and the249

empirical likelihood. Misspecification of the empirical model affects the latter. Observed250

data – and thus misspecification of the likelihood – matter less for posterior estimates with251

a tight prior. The quality of the estimates will then depend on the quality of the prior. This252

paper focuses on the question how misspecification affects what the observed data imply for253

parameter estimates. Thus, we focus on the likelihood and use Maximum Likelihood (ML)254

estimation. We do impose bounds on the range of parameters considered which alleviates255

the complexity of the optimization problem.256

Priors on the standard deviation of structural disturbances typically do not allow for point257

mass at zero. Ferroni et al. (2015) point out that this biases the results towards a positive258

role of all structural disturbances. This is not an issue for us, since we use ML estimation. In259

fact, estimated standard deviations of disturbances that are part of the empirical model but260

not part of the true dgp turn out to be often close to zero. Parameter values of the true data261

generating process are set equal to those of the SW posterior mode. The list of parameters262

estimated and their interpretation is given in Table 1.263

3.2. Evaluating the performance of the ASD approach264

In this section, we discuss the results of our Monte Carlo experiments. The outcomes265

for three different empirical models are compared. The first empirical specification correctly266
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models all regular structural disturbances as in Smets and Wouters (2007). This approach267

is denoted SW. The second empirical model excludes one regular structural disturbance268

that is part of and includes one regular structural disturbance that is not part of the true269

dgp. The third empirical model also excludes one of the regular structural disturbances, but270

replaces it with an ASD. This ASD empirical model is of a more reduced-form nature than271

the SW specification, but it is not misspecified. That is, there are values of the reduced-form272

parameters such that it matches the true model.273

Section 3.2.1 discusses the results when ASDs are used to detect misspecification both274

when the empirical model is indeed misspecified and when it is not. Section 3.2.2 discusses275

the ability of ASDs to correct for misspecification.276

3.2.1. Using ASDs to detect misspecification277

A good test for misspecification has power to reject a misspecified model and rejects a278

correctly specified model at the chosen significance level. This section documents that ASDs279

are capable of doing both.280

Case I: The empirical model is not correctly specified. To evaluate whether the ASD281

procedure can detect misspecification, we use a Likelihood Ratio (LR) test that compares the282

likelihood of the agnostic empirical specification to the likelihood of the misspecified empirical283

model. The number of degrees of freedom is equal to ten, since the agnostic specification284

has ten more parameters.16 With this procedure, the ASD procedure rejects the misspecified285

model in all Monte Carlo replications in both experiments. The procedure is, thus, quite286

powerful in detecting misspecification. The power of the test would decrease if one would287

use a Bayesian approach, since the common prior would make the posterior of the empirical288

model with an ASD and the misspecified empirical model more similar and less dependent289

on the data.290

16We use the formulation of our procedure that adds ASDs directly to the policy functions. This formu-
lation introduces the smallest possible number of additional parameters.
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Case II: The empirical model is correctly specified. For the first Monte Carlo exper-291

iment, we find that the rejection rate is 21.5% at the 10%-level and 12% at the 5%-level. For292

the second experiment, these two numbers are 20.9% and 12.6%. The standard error for an293

estimated fraction is given by f̂(1− f̂)/
√

1000, so these differences are significantly different294

from their theoretical counterpart. Although these small-sample results do not coincide pre-295

cisely with the theoretical predictions based on large-sample theory, the distortions are not296

unreasonable. In Appendix C, we document that the histograms of estimated χ2 statistics297

are reasonably close to the theoretical (large-sample) χ2 distribution, but – as indicated by298

the numbers above – have a slightly fatter upper tail.299

3.2.2. Using ASDs to correct for misspecification300

The discussion above made clear that the ASD procedure does very well in terms of301

detecting misspecified models and reasonably well in not rejecting correctly specified models302

in small samples. In this subsection, we document that the estimates of the structural303

parameters obtained with the agnostic procedure are much closer to the true values than304

those obtained with the misspecified empirical model. In fact, they are very similar to those305

obtained with the correctly specified empirical model with all structural disturbances fully306

modeled.307

Table 2 reports the average absolute error of the parameter estimates relative to the true308

value for the three different empirical models across Monte Carlo experiments. Parameter309

estimates obtained with the misspecified structural model are substantially worse than those310

obtained with the correctly specified model. The average of the errors for the misspecified311

model is more than twice as large as the one for the -fully-specified SW model for several312

parameters and for both experiments.17 For the misspecified model, the average errors are313

typically better for the second than for the first experiment. However, that is not true for all314

17Particular problematic is the standard deviation of the TFP disturbance in the first Monte Carlo ex-
periment for which the average error is almost nine time as large as the one for the correct empirical model.
Consistent with the broader investigation of Appendix D, this disturbance often takes over the role of the
wrongly excluded structural disturbance.
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parameters. For example, the average error for σc is substantially higher in the second exper-315

iment, whereas there is only a modest increase for the correctly specified model. Appendix316

D, which discusses the consequences of misspecification for all forty-two experiments, shows317

that the substantial distortions in parameter estimates reported here are not atypical and318

also distort implied model properties such as business cycle moments and IRFs.319

For the first Monte Carlo experiment, the average errors for the agnostic setup and the320

SW specification are very similar. Although only slightly, the average error is actually lower321

for the agnostic specification for ten of the twenty-seven parameters. Note that the agnostic322

specification is not misspecified, but has a disadvantage relative to the SW specification323

since it uses a reduced-form approach and contains ten more parameters. Nevertheless, the324

efficiency loss turns out to be very minor.325

For the second Monte Carlo experiment, the SW specification comes with some noticeable326

efficiency advantages for some parameter estimates. Nevertheless, estimates obtained with327

the ASD procedure are still much better than the one obtained with the misspecified model.328

Figures 1 and 2 plot histograms characterizing the distribution of the parameter esti-329

mates across Monte Carlo replications for a selected set of parameters. Each panel reports330

the results for the fully-specified SW model (dark line and dots), the agnostic procedure331

(white bars), and the misspecified model (blue/dark bars). The figures document that the332

distributions of estimates obtained with the SW specification and the agnostic procedure are333

both qualitatively and quantitatively very similar. By contrast, the distribution of estimates334

obtained with the misspecified empirical model can be vastly different. For example, Panel335

a of Figure 1 documents that the distribution of estimates of the capital share parameter,336

α, displays a strong downward bias when the misspecified empirical model is used. The337

associated mean is equal to 0.09, whereas the true value is equal to 0.19. The figure also338

documents that a large number of estimates are clustered at the imposed lower bound. That339

is, by imposing bounds we limited the distortions due to misspecification. For α, the leftward340

shift is so large, that there is little overlap between the distribution of the estimates based on341

the misspecified model and the other two empirical models. Bunching at the lower or upper342

bound is more pervasive for the first experiment, but also observed for the second.343
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For the parameters considered in these figures, the distribution of estimates for the ag-344

nostic and the fully-specified SW specification are almost always centered around the true345

parameter value. In principle, there could be a small sample bias, since this is a complex346

nonlinear estimation problem. The full set of results, discussed in Appendix C, do indeed347

indicate that there is a bias for some parameters. In those cases, the bias is similar for the348

estimator based on the fully-specified specification and the agnostic one. An example of a349

parameter that is estimated with bias is the labor supply elasticity with respect to the real350

wage, σl. Its true value is equal to 1.92. In the first experiment, the average estimate across351

the Monte Carlo replications is equal to 1.84 for the SW and 1.71 for the agnostic specifica-352

tion. By contrast, the associated average estimate is equal to 0.27 for the misspecified model,353

which indicates a bias of a much larger magnitude.354

4. Are the SW disturbances the right ones for US data?355

In this section, we first apply the ASD procedure to test the restrictions imposed by the356

SW structural disturbances with the US postwar data used by SW. We document that the357

restrictions imposed by the risk premium and the investment-specific technology disturbance358

are rejected by the ASD procedure. Next, we use model selection procedures to determine359

the number of ASDs to include and to construct a more concise specification that excludes360

the agnostic disturbances from some model equations. To conclude, we interpret the nature361

of the agnostic structural disturbances by examining the sign and magnitude of their asso-362

ciated coefficients in model equations and their IRFs. Appendix E provides more detailed363

information on our empirical analysis and additional results.364

4.1. Testing the Smets-Wouters disturbance restrictions365

Since SW use a Bayesian estimation procedure, we do the same. Implementing the ASD366

procedure only requires a minor modification of the Dynare program that estimates the model367

for the original SW specification. Replacing an SW regular structural disturbance with an368

ASD introduces a 13 × 1 Υ̃ vector but only twelve additional parameters to estimate, since369
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the standard deviation of the ASD innovation is normalized to 1.370

Suppose an original SW disturbance enters the jth equation with coefficient Υ̃j(Ψ). When371

it is replaced with an ASD, then we set the prior for the ASD coefficient in the jth equation to372

a Normal with a mean equal to Υ̃j(Ψ) with Ψ evaluated at SW prior means. By centering the373

priors of the agnostic coefficients around the SW restrictions, we favor the SW specification.374

However, the means of these priors hardly matter and our results are robust to setting the375

prior mean equal to zero for all coefficients. The standard deviations of the prior distributions376

for the Υ̃ coefficients are set equal to 0.5. This implies very uninformed priors, since the model377

is linear in log variables. As a robustness check we also consider a standard deviation equal378

to 0.1 and we find very similar results.379

The specification that replaces a regular disturbance with an agnostic one encompasses380

the original specification which gives it an advantage in terms of achieving a better fit. The381

additional parameters, however, act as a penalty term in the marginal data density. Table 3382

reports the marginal data densities for the original SW specification and for specifications383

in which the indicated regular structural disturbances is replaced by an ASD. Overall, these384

outcomes are quite supportive of the original SW specification as the SW restrictions are385

preferred for five of the seven structural disturbances. But the results for the risk-premium386

and the investment specific disturbance indicate that improvement is possible.387

4.2. Obtaining our preferred model with ASDs388

These results do not necessarily imply that we should exclude the structural risk-premium389

and investment disturbance. After all, it is possible that a model that includes agnostic dis-390

turbances as well as these two SW structural disturbances has an even higher marginal data391

density. Moreover, ASDs add quite a few extra parameters which may make interpretation392

more difficult. The next step of the ASD procedure is to use a model selection procedure.393

There are different model selection procedures one can use to obtain a preferred specifi-394

cation. Our procedure is described in detail in Appendix E.2. The chosen model is one that395

excludes the SW risk premium as well as the SW investment disturbance, it includes three396
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ASDs, and imposes several zero restrictions on the ASD coefficients.397

4.3. Giving the ASDs an economic interpretation398

ASDs are agnostic by nature. The model selection procedure also does not use any eco-399

nomic reasoning. Here we will show how the estimation results, such as parameter estimates400

of ASD coefficients and IRFs, can be used to give a meaningful interpretation to the ASDs.401

We will argue that one of the three selected ASDs can be interpreted as an investment-specific402

disturbance, but with some quite striking differences from the regular one used in the lit-403

erature and in SW. We will refer to this ASD as the agnostic “investment-modernization404

disturbance.” The second ASD has features in common with the SW risk-premium distur-405

bance and with a preference disturbance, but is different from both. We will refer to this406

ASD as the agnostic “Euler disturbance.” The role of the third ASD is quantitatively less407

important than the other two. It mainly affects wage growth and is associated with a more408

efficient use of capital. We will refer to this ASD as the “capital-efficiency wage mark-up409

disturbance.” By assigning names to agnostic disturbances, we may open ourselves to criti-410

cism. Our main reason for assigning these names is that we want to make clear that agnostic411

disturbances are in principle theory-free, and yet allow the researcher to go one step further,412

towards giving an economic interpretation to them.413

4.3.1. The agnostic investment-modernization disturbance, ε̃B,t414

In the SW model, the investment-specific technology disturbance shows up in the in-415

vestment Euler equation and in the capital accumulation equation. One of our agnostic416

disturbances, ε̃B,t, also shows up in these two equations.18 The only other equation in which417

ε̃B,t appears is the equation that relates capacity utilization to the rental rate of capital.418

These findings indicate that ε̃B,t could be interpreted as an investment-specific productivity419

18In our computer programs, the ASDs are referred to as agnA, agnB, and agnC. The interpretation for
agnB is the most straightforward so we discuss this one first. We could have relabeled it as ε̃A,t, but chose
not to do so to emphasize that labels for ASDs are arbitrary.
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disturbance. Furthermore, as documented in Table 4, ε̃B,t, plays an important role for the420

volatility of investment. Specifically, it explains 70% of the volatility of investment growth421

compared to 82.1% for the investment-specific disturbance in the SW model. Interestingly,422

ε̃B,t is not important for the volatility of capital. Specifically it only explains 2.37% of the423

volatility of the capital stock, whereas the SW investment disturbance explains 32.5%. Thus,424

if ε̃B,t is an investment-specific disturbance, then it is not a typical one.425

Figure 3 plots the IRFs of our agnostic disturbance and the SW investment-specific dis-426

turbance. This graph documents there are some remarkable differences. The SW investment427

disturbance generates a typical business cycle with key aggregates moving in the same direc-428

tion. A positive agnostic investment disturbance also leads to a strong comovement between429

output and investment, but leads to a reduction in consumption and capital.19 Also, whereas430

capacity utilization decreases in the SW model, our specification indicates an increase.431

To understand these differences and to explain why we still think that ε̃B,t is an investment-432

specific disturbance, we have to take a closer look at the relevant equations and how ε̃B,t433

affects these equations differently than the SW investment specific disturbance, εi,t. The434

three relevant equations are the following:20
435

Smets-Wouters investment-specific disturbance, εi,t

Investment Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + εi,tεi,tεi,t, (13)

Utilization: zt = z1 (Ψ) rkt , (14)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + k2 (Ψ) εi,t, k2 (Ψ) > 0k2 (Ψ) εi,t, k2 (Ψ) > 0k2 (Ψ) εi,t, k2 (Ψ) > 0. (15)

19Justiano et al. (2010) also report a negative consumption response to an investment disturbance, but
only for the first five periods. As discussed in Ascari et al. (2016), most models would predict a counter-
cyclical consumption response to an investment disturbance. The SW model overturns this property due to
a sufficiently high degree of price and wage stickiness. Our agnostic approach implies similar estimates for
price and wage stickiness, but still indicates that the data prefer a countercyclical consumption response.

20The subscripts of the coefficients of the agnostic disturbance refer to the SW equation number. For
example, Υ̃3,B ε̃B,t is the term added to Equation (3) of SW. it is the investment level, rkt the rental rate of
capital, zt the utilization rate, εi,t the SW investment-specific investment disturbance, and Ψ is the vector
with structural parameters.
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Agnostic investment-modernization disturbance, ε̃B,t

Investment Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + Υ̃3,B ε̃B,t, Υ̃3,B > 0Υ̃3,B ε̃B,t, Υ̃3,B > 0Υ̃3,B ε̃B,t, Υ̃3,B > 0, (16)

Utilization: zt = z1 (Ψ) rkt + Υ̃7,B ε̃B,t, Υ̃7,B < 0Υ̃7,B ε̃B,t, Υ̃7,B < 0Υ̃7,B ε̃B,t, Υ̃7,B < 0, (17)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + Υ̃8,B ε̃B,t, Υ̃8,B < 0Υ̃8,B ε̃B,t, Υ̃8,B < 0Υ̃8,B ε̃B,t, Υ̃8,B < 0. (18)

The reason for the striking differences between the IRFs of our ASD and the SW in-436

vestment disturbance is that our unrestricted approach lets the agnostic investment-specific437

disturbance appear in the capital accumulation equation without restrictions. That is, the438

sign of the coefficient of ε̃B,t, Υ̃8,B, is unrestricted, but the coefficient of εi,t in the SW spec-439

ification, k2(Ψ) is restricted by the values of the structural parameters, Ψ. The outcome is440

that the posterior mean of Υ̃8,B has the opposite sign relative to k2(Ψ) and the 90% HPD441

does not include 0.442

This means that a reduction in the cost of transforming current investment into capital443

goes together with increased depreciation of the existing capital stock in our specification.444

In the SW model, an investment-specific disturbance does not affect the economic viability445

of the existing capital stock. Our agnostic approach questions this assumption and suggests446

that the investment-specific productivity disturbance goes together with scrapping of older447

vintages. This is the reason why we refer to it as an agnostic investment-modernization448

disturbance.449

In the SW model, capacity utilization is proportional to the rental rate and there are450

no shocks that can affect this relationship. An accelerated depreciation of the capital stock451

increases the rental rate, which in turn would induce an increase in the utilization rate. In452

our agnostic specification, this relationship is dampened somewhat, since a positive agnostic453

disturbance has a direct negative impact on capacity utilization, since it enters the capacity454

utilization with a negative coefficient. The overall effect is still an increase in capacity uti-455

lization. It seems plausible that scraping of old vintages goes together with higher utilization456

of the remaining capital stock.457
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4.3.2. The agnostic Euler disturbance, ε̃A,t458

The agnostic disturbance ε̃A,t appears in eight equations. The key equation is the Euler459

equation for bonds, because excluding the disturbance from this equation leads to by far the460

largest drop in the marginal data density. This suggests that it could have key characteristics461

in common with a preference or a risk-premium disturbance. This view is also supported by462

Table 4 which documents that ε̃A,t is important for the same variables as the SW risk-premium463

disturbance. However, this agnostic disturbance also has some quite different characteristics464

from both. Therefore, we will adopt an alternative name and refer to it as the agnostic Euler465

disturbance. For the interpretation of ε̃A,t, it is important to understand the differences in466

impact of a regular preference and a regular (bond) risk-premium disturbance.467

Difference between a preference and (bond) risk-premium disturbance. Smets468

and Wouters (2003) include a preference disturbance which affects current utility. This469

means it affects the marginal rate of substitution and, thus, all Euler equations. By contrast,470

Smets and Wouters (2007) include instead a (bond) risk premium that introduces a wedge471

between the policy rate and the required rate of return on bonds without affecting other Euler472

equations.21 Both disturbances have a strong impact on current consumption when prices473

are sticky. A positive preference disturbance reduces the attractiveness of all types of saving474

including investment. A positive risk-premium disturbance only makes savings in bonds less475

attractive. That is, it induces a desire to substitute out of bonds and into investment, in476

addition to an increase in consumption. Thus, a preference disturbance leads to a negative477

comovement of consumption and investment, whereas a (bond) risk-premium disturbance478

leads to a positive comovement.479

Also, a preference disturbance affects output in both the flexible-price and the sticky-price480

part of the model, whereas a risk-premium disturbance has no affect on key aggregates such481

as consumption and output in the flexible price part of the SW model.482

21If a preference disturbance is added to the specification of Smets and Wouters (2007), then the marginal
data density drops from -922.40 to -923.57 and the preference disturbance plays virtually no role.
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Is ε̃A,t a preference, a risk-premium, or another type of disturbance? Figure 4 plots483

the IRFs of the SW risk-premium and our agnostic disturbance. The figure documents that484

both generate a regular business cycle with positive comovement for output, consumption,485

investment, and hours. The positive comovement suggest that the agnostic disturbance is486

a bond risk-premium disturbance and not a preference disturbance. However, the agnostic487

disturbance has a strong impact on flexible-price output which is inconsistent with it being488

a (bond) risk-premium disturbance and consistent with it being a preference disturbance.489

Since this ASD differs from both a preference and a risk-premium disturbance, we come up490

with a new term, namely the Euler disturbance.491

To better understand the nature of the agnostic Euler disturbance, we take a closer look492

at the equations in which ε̃A,t enters. It appears in the aggregate budget constraint, the bond493

Euler equation, the investment Euler equation, the capital value equation, the utilization rate494

equation, the price mark-up equation, the rental rate of capital equation, and the Taylor rule.495

Although ε̃A,t affects quite a few different aspects of the model, the interpretation is eased496

by the fact that its role is minor in most of the eight equations in the sense that allowing497

it to enter these equations only has a minor quantitative impact on the behavior of model498

variables or only affects the qualitative behavior of one or two variables without affecting the499

behavior of the key macroeconomic variables.500

Specifically, to understand the role of ε̃A,t on key macroeconomic aggregates we can re-501

strict ourselves to the Taylor rule and the three model equations that are relevant for the502

savings/investment decisions, which are the bond Euler equation, the investment Euler equa-503

tion, and the capital value equation. As in SW, we use the bond Euler equation to substitute504

the marginal rate of substitution out of the capital valuation equation. While the SW bond505

risk-premium disturbance, εb,t, does not appear in the original capital valuation equation, it506

does show up after this substitution has taken place. Moreover, it appears in these two equa-507

tions with the exact same coefficient as the nominal interest rate for bonds, rt. By contrast,508

after substituting out the marginal rate of substitution in the capital value equation, a pref-509

erence disturbance would no longer appear in the capital valuation equation. The following510

set of equations documents how the SW risk-premium and our agnostic Euler disturbance511
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enter these equations:22
512

Smets-Wouters risk premium, εbt

Bond Euler: ct = c1 (Ψ) ct−1 + (1− c1 (Ψ))Et [ct+1] + c2 (Ψ) (lt − Et [lt+1])

−c3 (Ψ)(rt − Et [πt+1] + εb,t)(rt − Et [πt+1] + εb,t)(rt − Et [πt+1] + εb,t), c3(Ψ) > 0, (19)

Inv. Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + εi,t, (20)

Valuation: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
−(rt − Et [πt+1] + εb,t)(rt − Et [πt+1] + εb,t)(rt − Et [πt+1] + εb,t), (21)

Policy rate: rt = ρrt−1 + (1− ρ){rπ + rY (yt − ypt )}

+r∆y[(yt − ypt )− (yt−1 − ypt−1)] + εr,t. (22)

Agnostic Euler disturbance, ε̃A,t

Bond Euler: ct = c1 (Ψ) ct−1 + (1− c1 (Ψ))Et [ct+1] + c2 (Ψ) (lt − Et [lt+1])

−c3 (Ψ)(rt − Et [πt+1])− Υ̃2,Aε̃A,t, Υ̃2,A > 0(rt − Et [πt+1])− Υ̃2,Aε̃A,t, Υ̃2,A > 0(rt − Et [πt+1])− Υ̃2,Aε̃A,t, Υ̃2,A > 0, (23)

Inv. Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + εi,t − Υ̃3,Aε̃A,t, Υ̃3,A > 0Υ̃3,Aε̃A,t, Υ̃3,A > 0Υ̃3,Aε̃A,t, Υ̃3,A > 0, (24)

Valuation: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
−(rt − Et [πt+1])− Υ̃4,Aε̃A,t, Υ̃4,A > 0(rt − Et [πt+1])− Υ̃4,Aε̃A,t, Υ̃4,A > 0(rt − Et [πt+1])− Υ̃4,Aε̃A,t, Υ̃4,A > 0, (25)

Policy rate: rt = ρrt−1 + (1− ρ){rπ + rY (yt − ypt )}

+r∆y[(yt − ypt )− (yt−1 − ypt−1)] + εr,t + Υ̃14,Aε̃A,t, Υ̃14,A > 0Υ̃14,Aε̃A,t, Υ̃14,A > 0Υ̃14,Aε̃A,t, Υ̃14,A > 0. (26)

Our ASD appears in the bond Euler equation and the capital valuation equation and it513

shows up with the same sign as the SW risk-premium disturbance. This supports the view514

that our ASD is similar to a risk-premium disturbance. Nevertheless, one could argue that515

22In these equations, ct is consumption, lt is hours worked, rt is the nominal policy rate, πt is the inflation
rate, qt is the price of capital, yt is output, and ypt is output in the flexible-price economy. Also see the
information given in footnote 20.
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the ASD is a preference and not a bond risk-premium disturbance for the following reasons.516

Although Υ̃4,A has the right sign for a risk-premium coefficient, its magnitude, evaluated517

using the posterior mean, is way too small.23 The 90% HPD interval of the coefficient of ε̃A,t518

in the capital valuation equation, Υ̃4,A, includes zero and setting the coefficient equal to zero519

has very little impact on model properties and virtually none on the marginal data density.520

As pointed out above, a preference disturbance generates consumption and investment521

responses that move in opposite directions. Our ASD predicts responses in the same direction522

even if we impose that the ASD does not enter the capital valuation equation (after substi-523

tuting out the MRS). The reason for the positive comovement is that our ASD also enters524

the investment Euler equation. The investment Euler equation is a dynamic equation, but525

its dynamic aspects are due solely to investment adjustment costs.24 Our agnostic approach526

indicates that the structural disturbance that plays a key role in the bond Euler equation527

should also appear in the investment Euler equation. In fact, it is the first equation chosen528

in our specific-to-general model selection procedure.529

What could this agnostic disturbance represent? A simple explanation is that it is a530

preference disturbance that is correlated with an investment-specific disturbance. This dis-531

turbance appears directly in the Taylor rule with a negative coefficient. This means that the532

central bank responds more aggressively to business cycle fluctuations induced by this Euler533

disturbance. Without this effect on the Taylor rule this disturbance would have a stronger534

impact on economic aggregates and inflation would no longer be procyclical.535

4.3.3. The agnostic capital-efficiency wage mark-up disturbance, ε̃C,t536

The third ASD chosen by our model selection criterion increases the total number of537

structural disturbances to eight, that is, one more than the number in the SW specification.538

Thus, this ASD cannot be interpreted as a replacement of a SW disturbance.539

23If our ASD is a risk-premium disturbance, then Υ̃4,A/Υ̃2,A should be equal to 1/c3(Ψ), but using

posterior means, we find that Υ̃4,A/Υ̃2,A = 3.3, whereas 1/c3(Ψ) = 7.27, substantially higher.
24Adjustment costs are zero in the steady state, which implies that neither a preference disturbance nor a

risk-premium disturbance appear in a linearized investment Euler equation. A preference disturbance would
appear in the original nonlinear equation.
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This third ASD, ε̃C,t, appears in five equations and the most important one (in terms540

of impact on the marginal data density) is the wage-adjustment equation. It also shows541

up into three equations related to capital, namely the capital accumulation equation, the542

capital utilization equation, and the capital-valuation equation. Finally, it appears in the543

economy-wide budget constraint, although the impact on the latter is minor.544

Given its impact on the wage equation, this ASD could very well also be a wage distur-545

bance. Figure 5 plots its IRFs for ε̃C,t and for εw,t in the SW and in our specification with546

three ASDs and the SW risk premium and investment disturbance excluded. The IRFs of547

εb,t in the two specifications generate a similar business cycle, also quantitatively. A positive548

shock to ε̃C,t also induces a recession with a reduction in output, investment, and employ-549

ment. However, it leads to an increase in installed capital and capital services although the550

latter less than the first. In contrast to the SW εw,t shock it goes together with a decrease551

in the price of capital.552

ε̃C,t is an AR(1) process, and the posterior mean of the auto-regressive coefficient is equal553

to 0.19. The SW εw,t disturbance is a very persistent ARMA(1,1) process. The presence of554

ε̃C,t in the empirical model strongly reduces the coefficient of the MA component of εw,t, but555

has little impact on the AR component.25
556

Including ε̃C,t in the empirical specification does not reduce the role of εw,t for fluctuations557

of key variables. εw,t remains the most important disturbance for key economic aggregates.558

The only exception is the wage growth rate. In the SW specification εw,t explains 61.6% of559

the volatility of wage growth, whereas it only explains 13.3% in our preferred specification.560

This role is clearly taken over by ε̃C,t which explains 53.5% of wage growth volatility. ε̃C,t561

also plays a nontrivial role for fluctuations in the capital stock, capacity utilization, and the562

rental rate of capital, explaining 9.8%, 14.7%, and 13.1%, of total variability respectively.563

The results indicate that this agnostic disturbance increases the wage mark-up and is564

associated with a lower price of capital and an increased (use of the) capital stock. One565

25Specifically, with ε̃C,t included in the empirical specification the posterior means of the AR and the MA
coefficients of εw,t are equal to 0.97 and 0.59, respectively. Estimates with the SW specification for these two
numbers are 0.97 and 0.85.
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possible explanation is that the increase in the level of used capital (possibly induced by566

lower prices) comes at the cost of higher wage rates. That is, to operate this larger capital567

stock, firms have to pay a higher wage rate, perhaps in terms of an overtime premium. The568

relevant equations are the following:26
569

Agnostic capital-efficiency-wage-mark-up disturbance, ε̃C,t

Valuation: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
−(rt − Et [πt+1])− Υ̃4,C ε̃C,t, Υ̃4,C < 0(rt − Et [πt+1])− Υ̃4,C ε̃C,t, Υ̃4,C < 0(rt − Et [πt+1])− Υ̃4,C ε̃C,t, Υ̃4,C < 0, (27)

Utilization: zt = z1 (Ψ) rkt + Υ̃7,C ε̃C,t, Υ̃7,C > 0Υ̃7,C ε̃C,t, Υ̃7,C > 0Υ̃7,C ε̃C,t, Υ̃7,C > 0, (28)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + Υ̃8,C ε̃C,t, Υ̃8,C > 0Υ̃8,C ε̃C,t, Υ̃8,C > 0Υ̃8,C ε̃C,t, Υ̃8,C > 0, (29)

Wage: wt = w1wt−1 + (1− w1)(Et[wt+1 + πt+1]

−w2πt + w3πt−1 − w4µw,t + Υ̃13,C ε̃C,t, Υ̃8,C > 0Υ̃13,C ε̃C,t, Υ̃8,C > 0Υ̃13,C ε̃C,t, Υ̃8,C > 0. (30)

4.4. Correlation estimated innovations570

Estimated innovations are supposed to be orthogonal to each other and display no auto-571

correlation. In practice this is often not the case. As shown in Appendix E.3, the ASD system572

does a substantially better job than the SW system regarding cross-correlations. Both η̃A,t573

and η̃B,t are less correlated with other innovations than their SW counterparts ηb,t and ηi,t.574

Moreover, the cross-correlations of the regular structural disturbances that are present in575

both specifications are also less correlated. Specifically, whereas the SW has nine correlation576

coefficients that are significantly different from zero at the 10% level for its seven innovations,577

the ASD system has four significant correlation coefficients for its eight innovations and only578

two if we exclude the eighth innovation of the ASD system that is associated with ε̃C,t.579

The ASD specification also does better regarding the auto-correlation of the innovations.580

26We leave out the overall budget constraint since the role of the disturbance in this equation is very
minor, but its impact in this equation is like a contractionary fiscal expenditure shock. wt is the real wage
rate and µw,t is the real wage mark-up, i.e., the difference between the wage rate and the marginal rate of
substitution between consumption and leisure. Also see footnote 20 for additional information.
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In the SW system, four of the estimated innovations display significant auto-correlation at581

the 10% level. That number reduces to two in the ASD system and one of the significant582

coefficients is for the innovation associated with the additional disturbance, ε̃C,t, for which583

there is no counterpart in the SW system.584

5. Concluding comments585

Structural disturbances play a key role in modern business cycles models. Thus, it is586

important to introduce them correctly. Having wrong formulations will lead to the wrong587

inference on what type of disturbances matter most for the fluctuations of key economic588

variables. One of the main objectives of structural models is to do policy analysis. Deriving589

optimal fiscal and monetary policy correctly also depends crucially on formulating structural590

disturbances correctly since these are important ingredients of optimal policy rules.591

This paper shows that misspecifications can also lead to substantial distortions in param-592

eter estimates and implied model properties. Obviously, the analysis of government policies593

will be flawed if parameter estimates are incorrect. For example, the impact of monetary pol-594

icy on economic aggregates in New Keynesian models depend crucially on getting parameters595

related to the degree of price and wage stickiness right.596

The development of MCMC techniques has made it possible to estimate larger models597

with a larger set of observables. To avoid singularity issues this also requires including more598

disturbances which enhances the challenge to model them all correctly. ASDs can help.599

First, they can be used to test whether the specification of a regular structural disturbance600

is correct and if found problematic can provide insights on how to improve its specification.601

Researchers can also simply add ASDs to the set of structural disturbances without having602

any concern about these introducing misspecification.603

Focusing on the misspecification of disturbances is only a first step in a proper evaluation604

of a structural model. Moreover, economists are often more interested in how the model itself605

magnifies and propagates shocks than in what created the initial disruption. Our procedure606

is helpful in this regard. By being more agnostic about the nature of structural disturbances607
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one is less likely to distort the analysis of what one is ultimately interested in.608
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6. Tables and figures609

Table 1: Parameter explanations

α Capital share
σc Inverse IES of consumption
Φ Fixed cost in production
φ Elasticity of adjustment cost function
λ Degree of consumption habits
ξw Degree of wage rigidity
σ` Inverse IES of leisure
ξp Degree of price rigidity
ιw Degree of indexation for wages
ιp Degree of indexation for prices
ψ Elasticity of capital utilization adj. cost function
rπ Taylor rule coefficient on inflation
ρ Degree of interest rate smoothing in Taylor rule
ry Taylor rule coefficient on output gap
r∆y Taylor rule coefficient on change in output gap

for j ∈ {a, b, g, i, r, p, w} :
ρj Persistence of exogenous disturbance j
σj Standard deviation of exogenous disturbance j

for j ∈ {p, w} :
µj MA coefficient of exogenous disturbance j

Notes. The table reports the parameters of the SW model that are estimated
and their interpretation. The list of exogenous disturbances is given in the
text.
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Table 2: Average absolute errors across Monte Carlo experiments

true average error first MC average error second MC
value misspecified agnostic SW misspecified agnostic SW

α 0.19 0.098 0.035 0.028 0.056 0.048 0.037
σc 1.39 0.384 0.246 0.191 0.540 0.288 0.226
Φ 1.61 0.217 0.212 0.191 0.192 0.212 0.164
φ 5.48 1.793 1.326 0.899 1.429 1.269 0.896
h 0.71 0.096 0.069 0.052 0.083 0.077 0.057
ξw 0.73 0.082 0.090 0.076 0.092 0.095 0.081
σ` 1.92 1.652 0.640 0.532 1.506 0.939 0.831
ξp 0.65 0.130 0.074 0.068 0.090 0.080 0.070
ιw 0.59 0.205 0.165 0.159 0.190 0.168 0.160
ιp 0.22 0.142 0.109 0.101 0.128 0.112 0.100
ψ 0.54 0.182 0.128 0.109 0.150 0.134 0.118
rπ 2.03 0.295 0.277 0.241 0.347 0.380 0.333
ρ 0.81 0.031 0.025 0.022 0.034 0.038 0.030
ry 0.08 0.051 0.025 0.021 0.055 0.034 0.029
r∆y 0.22 0.058 0.014 0.012 0.057 0.039 0.033
ρa 0.95 0.071 0.028 0.020 - - -
ρb 0.18 0.161 0.078 0.073 0.133 0.079 0.071
ρg 0.97 0.020 0.016 0.013 0.018 0.016 0.014
ρi 0.71 - - - - -
ρr 0.12 - - - 0.089 0.072 0.067
ρp 0.90 0.181 0.090 0.067 0.188 0.070 0.053
ρw 0.97 0.031 0.030 0.019 0.022 0.029 0.021
µp 0.74 0.246 0.188 0.161 0.250 0.173 0.139
µw 0.88 0.071 0.072 0.056 0.069 0.071 0.057
σa 0.45 0.441 0.061 0.052 - - -
σb 0.24 0.050 0.021 0.021 0.040 0.023 0.021
σg 0.52 0.035 0.027 0.026 0.026 0.027 0.025
σi 0.45 - - - - -
σr 0.24 - - - 0.013 0.015 0.014
σp 0.14 0.022 0.017 0.015 0.019 0.017 0.015
σw 0.24 0.026 0.021 0.020 0.022 0.023 0.021

Notes. This table reports the average absolute error across Monte Carlo replications for the indicated parameter
and empirical specification. See Table 1 for the definitions of the parameters. The first (second) Monte Carlo
experiment corresponds to the case when the true dgp does not include the monetary policy (TFP) disturbance,
but the empirical model leaves out the investment disturbance instead.
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Table 3: Misspecification tests for the original Smets-Wouters empirical model

structural SW
disturbance excluded

ASD added marginal data density

None (original SW) no -922.40
TFP, εa,t yes -931.21
Risk premium, εb,t yes -908.79
Government expenditure, εg,t yes -934.14
Investment-specific, εi,t yes -919.81
Monetary policy,εr,t yes -926.88
Price mark-up, εp,t yes -938.85
Wage mark-up, εw,t yes -947.31

Notes. The table reports the marginal data density for different empirical specifications. The first
row reports the value for the original SW specification. The specifications considered in subsequent
rows replace the indicated structural disturbance with an agnostic structural disturbance. The bold
numbers indicate the cases for which the MDD is higher when the indicated structural disturbance is
replaced by an ASD.

Table 4: Role of structural disturbances for variance

risk/preference investment wage
SW εb,t agnostic ε̃A,t SW εi,t agnostic ε̃B,t agnostic ε̃C,t

output 1.53 1.14 7.34 2.17 0.28
flex. price output 0 2.08 5.39 1.02 0.36
consumption 2.18 1.51 2.83 0.49 0.25
investment 0.22 1.06 44.2 29.3 1.00
hours 2.52 1.29 8.15 4.97 2.03
capital 0.04 0.12 32.5 2.37 9.75
utilization 0.86 4.14 35.4 9.46 14.7
price of capital 45.4 18.6 36.0 31.6 7.21
marginal cost 0.87 15.2 3.11 2.61 5.13
policy rate 7.40 17.2 18.3 12.5 0.65
inflation 0.58 0.68 3.18 3.96 0.91
output growth 22.1 21.3 15.8 8.04 1.82
consumption growth 61.2 61.7 0.95 2.03 0.10
investment growth 2.46 12.6 82.1 70.0 0.81

Notes. The table reports the percentage of total variability explained by the SW versus the agnostic
risk-premium disturbance, the SW versus the agnostic investment disturbance, and the agnostic wage
disturbance. The numbers for the SW disturbance are from estimation of the original SW model. The
numbers for the agnostic disturbance are from our preferred empirical model with three ASDs.
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Figure 1: Histograms for parameter estimates: First Monte Carlo experiment
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Notes. The panels plot the distribution of the indicated parameter across the Monte Carlo replications. The color of the
histograms for the misspecified case changes in a lighter shade when they overlap with the histogram for the agnostic specification.
In this experiment, the true dgp does not include the monetary policy disturbance, but the empirical model leaves out the
investment disturbance instead.



Figure 2: Histograms for parameter estimates: Second Monte Carlo experiment

(a) Capital share, α
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Notes. The panels plot the distribution of the indicated parameter across the Monte Carlo replications. The color of the
histograms for the misspecified case changes in a lighter shade when they overlap with the histogram for the agnostic specification.
In this experiment, the true dgp does not include the TFP disturbance, but the empirical model leaves out the investment
disturbance instead.



Figure 3: IRFs of the SW investment and the agnostic investment-modernization disturbance
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Notes. These panels plot the IRFs of the SW investment-specific productivity disturbance and the agnostic disturbance
ε̃B,t that we interpret as an investment-modernization disturbance.
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Figure 4: IRFs of the SW risk-premium and the agnostic Euler disturbance
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Notes. These panels plot the IRFs of the SW risk-premium disturbance and the agnostic disturbance ε̃A,t that we interpret
as an Euler disturbance.
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Figure 5: IRFs of the agnostic capital-efficiency wage mark-up disturbance
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Notes. These panels plot the IRFs of the agnostic disturbance ε̃C,t that we interpret as a capital-efficiency wage mark-up
disturbance. They also plot the SW wage disturbance for the original SW specification and ours.
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Appendix A. The ASD procedure: General setup661

Using a simple model, Section 2 made clear that adding an agnostic structural disturbance662

(ASD) is as simple as adding an exogenous random variable multiplied by a coefficient to each663

model equation. The coefficients are unrestricted and not related to any of the structural664

parameters of the model. It also shows how the ASD coefficients appear in the model’s policy665

functions and that an alternative way to incorporate ASDs consists of adding them directly666

to the policy functions. In this appendix, we generalize the discussion.667

Appendix A.1. Adding ASDs to model equations668

Consider the following linearized model:

0N×1 = Et [Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1 + Γ (Ψ) εt+1 + Υ (Ψ) εt] , (A.1a)

εt = Pεt−1 + Ωηt, (A.1b)

Et [ηt+1] = 0, (A.1c)

Et
[
ηt+1η

′
t+1

]
= IM×M , (A.1d)

where Ψ is the vector containing the structural parameters, st is the N × 1 vector of en-669

dogenous variables, and εt is the M × 1 vector of exogenous random variables. All variables670

are defined relative to their steady state values. Most linearized DSGE models can be rep-671

resented with such a system of equations. The literature typically assumes that innovations672

are assumed to be orthogonal to each other, that is, Ω is assumed to be a diagonal matrix.673

We make the same assumption.27
674

We first discuss the case for which st includes only state variables and all N state variables
are observables. Suppose that the researcher is only sure about M1 structural disturbances.
These are part of the vector, ε1,t. If M1 < N and there are no other disturbances, then there
is a singularity problem. One option would be to add measurement error. But structural
disturbances and measurement errors are very different. Structural disturbances affect eco-
nomic variables and propagate through the system according to the economic mechanisms of
the model. As discussed in the main text, measurement error disturbances do not. Moreover,
most researchers would find it undesirable if measurement error “explains” a large part of
the data. Another option is to make a best guess and to add a vector ε2,t with M2 additional

27The literature typically also assumes that P is diagonal. An exception is Cúrdia and Reis (2012).
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structural disturbances with M2 ≥ N −M1. Equation (A.1) can then be written as

0N×1 = Et [Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1 + Γ (Ψ) εt+1 + Υ (Ψ) εt]

= Et

 Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1

+ [Γ1 (Ψ) Γ2 (Ψ)]

[
ε1,t+1

ε2,t+1

]
+ [Υ1 (Ψ) Υ2 (Ψ)]

[
ε1,t

ε2,t

]  , (A.2a)

[
ε1,t

ε2,t

]
=

[
P11 P12

P21 P22

] [
ε1,t−1

ε2,t−1

]
+

[
Ω11 0M1×M2

0M2×M1 Ω22

] [
η1,t

η2,t

]
, (A.2b)

Et
[
η1,t+1

η2,t+1

]
= 0, (A.2c)

Et
[[

η1,t+1

η2,t+1

] [
η1,t+1 η2,t+1

]]
= IM×M . (A.2d)

The column vectors Γ2(Ψ) and Υ2(Ψ) capture the restrictions imposed by the M2 additional675

structural disturbances.676

Introducing ASDs. With ASDs the system of equations is modified as follows:

0N×1 = Et
[

Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1

+Γ1 (Ψ) ε1,t+1 + Υ1 (Ψ) ε1,t + Υ̃2ε̃2,t

]
. (A.3)

As in the main text, all ASD variables and their associated coefficients are denoted with a677

tilde. As long as P21 = 0, then one can exclude ε̃2,t+1 from the system, since what matters is678

Et[ε̃2,t+1] = P22ε̃2,t and the reduced-form coefficient Υ̃2 captures this forward looking aspect679

of ASDs as well as the contemporaneous impact of the ASD on the model equations.28
680

Thus, adding an agnostic disturbance introduces one additional parameter for each model681

equation.29,30 Replacing regular structural disturbances with agnostic structural disturbances682

may make it harder to identify Ψ, the structural parameters of the model. As discussed in683

Appendix C.2, this turned out to be not an issue for the experiments discussed in this paper.684

Appendix A.2. Adding ASDs to model solutions685

We start this section with a proposition that will be helpful with the second formulation686

of the ASD procedure. Consider again the model given in Equation (A.2), which divides the687

vector with exogenous disturbances, εt, into two parts, the M1×1 vector, ε1,t, and the M2×1688

28If P2,1 6= 0, then additional reduced-form coefficients would be needed to capture the predictive power
of ε1,t for future values of ε̃2,t. The assumption that P2,1 = 0 is weak given that the standard assumption in
the literature is that structural disturbances are independent random variables.

29Without loss of generality one can set the standard deviations of the innovation of the ASDs equal to 1,
which in this case is a normalization of the diagonal elements of Ω2,2. As with regular structural disturbances,
one would need to estimate the parameters of the time series specification contained in G.

30As discussed in Appendix E, one could choose to leave the agnostic disturbance out of some equations.
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vector, ε2,t. A recursive solution to Equation (A.2) has the following form:689

st = A (Ψ) st−1 +B(Ψ)εt

= A (Ψ) st−1 +
[
B1 (Ψ) B2 (Ψ)

] [ ε1,t

ε2,t

]
. (A.4)

The following proposition states that the properties of ε2,t do not affect the coefficients690

of the policy rule related to st−1 and ε1,t, that is, they do not affect A(Ψ) and B1(Ψ). Thus,691

it does not matter whether ε2,t is a regular or an agnostic structural disturbances and the692

time series properties of ε2,t do not matter either. The only assumption needed is that the693

elements of P21 are equal to zero, which corresponds to the case when ε1,t has no effect on694

future values of ε2,t. This is not very restrictive given that the literature usually sets all695

elements of P21 equal to zero (and also all elements of P12, Ω1,2, and Ω2,2 as well as the696

off-diagonal elements of P11, P22, Ω1,1 and Ω2,2).697

Proposition 1. If the model is given by equation (A.2) and all elements of P21 are equal to698

zero, then (i) A(Ψ) and B1(Ψ) do not depend on Γ2(Ψ) and Υ2(Ψ), which characterize the699

nature of the additional disturbances, and (ii) A(Ψ) and B1(Ψ) do not depend on P22, Ω21,700

and Ω22, which characterize the time series properties of ε2,t.701

Proof. Substitution of the policy rule as given in Equation (A.4) into the system of Equa-702

tions (A.2) gives,703

0N×1 =
(
Λ2A

2 + Λ1A+ Λ0

)
st−1 + (Λ2AB + Λ2BP + Λ1B + ΓP + Υ) εt, (A.5)

εt =
[
ε1,t ε2,t

]′
, (A.6)

B =
[
B1 B2

]
, (A.7)

P =

[
P11 P12

P21 P22

]
, (A.8)

where we have suppressed the dependence of coefficients on Ψ. The first equation has to hold
for all values of st−1 and εt. This implies that a solution must satisfy

Λ2A
2 + Λ1A+ Λ0 = 0N×N (A.9)

and
Λ2AB + Λ2BG+ Λ1B + ΓP + Υ = 0N×(M1+M2). (A.10)

A does not depend on the time series properties of ε1,t and ε2,t, since B, P, and Ω do not
appear in Equation (A.9). Equation (A.10) can be written as follows

Λ
[
B1 B2

]
+ Λ2

[
B1 B2

] [ P11 P12

P21 P22

]
+ Γ

[
P11 P12

P21 P22

]
+ Υ = 0N×(M1+M2), (A.11)
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where Λ = Λ2A+ Λ1. This is a system of N × (M1 +M2) equations to solve for the elements704

of B. It can be split into the following two sets of systems:705

ΛB1 + Λ2B1P11 + Λ2B2P21 + Γ1

[
P11

P21

]
+ Υ1 = 0N×M1 , (A.12)

ΛB2 + Λ2B1P12 + Λ2B2P22 + Γ2

[
P12

P22

]
+ Υ2 = 0N×M2 . (A.13)

If P21 = 0, then Equation (A.12) contains N ×M1 equations to solve for all the elements706

of B1. The solution cannot depend on P22 or Ω22 since these matrices do not appear in this707

equation.�708

It is intuitive that the elements of P21 have to be equal to zero, that is, ε1,t should not709

affect future values of ε2,t. If current values of ε1,t do affect future values of ε2,t and therefore710

future values of st, then one has to know how ε2,t affects model outcomes to determine how711

ε1,t affects current outcomes for st.712

Introducing ASDs. The solution to a linearized model can be written as:713

st =
M∑
m=1

s
[m]
t , (A.14)

s
[m]
t = A (Ψ) s

[m]
t−1 +B·,m (Ψ) εm,t, (A.15)

where s
[m]
t represents the outcome of the state variable if the only disturbance in the economy714

is the mth-disturbance, εm,t, and B·,m is the mth column of B. Thus, one can think of the st715

variables as the sum of the outcomes in “one-disturbance” economies. The linearity of the716

model is important for this additive property. According to Proposition 1, the coefficients717

on the lagged state variable, A (Ψ), do not depend on the particular disturbance considered.718

That is, whereas B·,m(Ψ) is indexed by m because it depends on what kind of disturbance719

is the driving force of the economy, A(Ψ) does not. This property greatly increases the720

efficiency of our procedure.721

Our proposed procedure consists of including M̃2 agnostic structural disturbances. This722

results in the following time series representation of the policy functions:31
723

st =
M∑
m=1

s
[m]
t , (A.16a)

s
[m]
t = A (Ψ) s

[m]
t−1 +B·,m (Ψ) εm,t for m ≤M1, (A.16b)

s
[m]
t = A (Ψ) s

[m]
t−1 + B̃·,mε̃m,t for M1 + 1 ≤ m ≤M1 + M̃2 = M. (A.16c)

31Proposition 1 indicates that this specification is valid as long as the elements of P12 are equal to zero,
which is usually the case.
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In terms of notation, B·,m(Ψ) contains coefficients associated with a regular structural dis-724

turbance which are a function of Ψ and B̃·,m contains reduced-form coefficients associated725

with a structural agnostic disturbance. The only difference between this specification and the726

standard DSGE specification with only regular structural disturbances is that the B̃·,m coef-727

ficients are unrestricted reduced-form coefficients. Since our agnostic disturbances are struc-728

tural disturbances, their impact propagates through the system exactly as regular structural729

disturbances do, that is, as described by A(Ψ). The property of linear models that A(Ψ) does730

not depend at all on what is the nature of the structural disturbances nor on their time series731

properties makes it possible to efficiently add structural disturbances to the specification732

without having to be specific on what they are.733

The dimension of B̃·,m is equal to N , the number of state variables. This means that734

adding an agnostic disturbance means estimating an additional N parameters. The number735

of additional parameters to be estimated is limited because structural disturbances differ736

in their initial impact, but their propagation through time is the same for all disturbances737

and controlled by A(Ψ). Moreover, an increase in the standard deviation of an agnostic738

structural disturbance affects the model variables in exactly the same way as an identical739

proportional increase of the elements of B̃·,m. Consequently, the standard deviation of an740

agnostic disturbance can be normalized to equal 1.32
741

Adding observation equations. If there are observables that are not state variables,742

then one also needs additional equations for these yt variables, which for our set-up is given743

by744

yt =
M∑
m=1

y
[m]
t , (A.17a)

y
[m]
t = C (Ψ) s

[m]
t−1 +D·,m (Ψ) εm,t for m ≤M1, (A.17b)

y
[m]
t = C (Ψ) s

[m]
t−1 + D̃·,mε̃m,t for M1 + 1 ≤ m ≤M1 + M̃2 = M, (A.17c)

where yt is the (N × 1) vector with observables that are not state variables. Each additional745

observable used in the estimation will introduce one more coefficient related to the agnostic746

structural disturbances.747

Unobserved components. The system represented in Equation (A.16) makes clear that748

ASDs can be interpreted simply as unobserved components that are added to a theoretical749

block. Using reduced-form systems with unobserved components is common practice in750

macroeconomic time-series models. The data will provide information about the B̃·,m (and751

D̃·,m) coefficients. If one mainly cares about getting good time-series representations of752

32If the time series processes of the two disturbances have the same number of parameters, then replacing
a regular structural disturbance by an agnostic disturbance typically means estimating an additional N − 1
parameters.
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macroeconomic variables, then can just use this way of incorporating ASDs. However, as753

shown in our empirical applications, ASDs become much more interesting if one knows the754

Υ̃2,m coefficients. Then one can much better understand how these unobserved components755

affect the model economy.756

Appendix B. Misspecification: Literature review757

Most empirical papers that estimate a dynamic macroeconomic model do not raise the758

issue of model uncertainty or misspecification, except possibly with some robustness exer-759

cises.33 This does – of course – not mean that the profession is not aware that misspecification760

is a serious concern. In fact, some of the most prominent researchers in this research area have761

drawn attention to the risk of misspecification. The first subsection discusses evidence that762

indicates that misspecification of DSGE models is a serious concern. The second subsection763

discusses approaches proposed in the literature to deal with misspecfication. See Paccagnini764

(2017) for a more detailed survey.765

Appendix B.1. Indications of DSGE misspecification766

Del Negro et al. (2007) develop a procedure that allows the data to determine the use-767

fulness of a DSGE model relative to a much less restricted VAR. Using a model very similar768

to the DSGE model of Smets and Wouters (2003), they find that their procedure does put769

some weight on the DSGE model, which implies that the restrictions of the DSGE model are770

of some value. However, they also argue that misspecification is a concern that “... is not771

small enough to be ignored.” Using the same methodology, Del Negro and Schorfheide (2009)772

also find “... strong evidence of DSGE model misspecification.”773

There is also more indirect evidence that misspecification of estimated DSGE models is774

substantive. Using the Smets and Wouters (2003) model for the Euro Area, Beltran and775

Draper (2015) find that the data prefer implausible estimates for several parameters. For776

example, most of the mass of the marginal likelihood for the parameter of relative risk aversion777

is above 200, way above the range of values considered reasonable. This information provided778

by the likelihood is typically not revealed in empirical studies, since only properties of the779

posterior are reported and the choice of prior ensures that these aspects of the empirical780

likelihood have little or no weight in the posterior. A similar conclusion can be drawn from781

Onatski and Williams (2010). They estimate the same model using uniform priors over782

bounded ranges. These ranges are such that the priors are less informative than the ones783

typically used in the literature. Consistent with the results in Beltran and Draper (2015),784

several of the point estimates in Onatski and Williams (2010) are at the prior bounds. Using785

a new algorithm to deal with the complexity of estimating likelihood functions, Mickelsson786

(2015) re-estimates the model of Smets and Wouters (2007) and he also finds that several787

33Interestingly, there are quite a few macroeconomic models in which agents – especially agents setting
fiscal and monetary policy – face model uncertainty. If policy makers face model uncertainty about the
correct model, then researchers are likely to do so as well.
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parameter estimates are significantly different from the ones reported in Smets and Wouters788

(2007).789

Another possible reason for misspecification is the assumption that parameters are con-790

stant. To get efficient estimates we would like to use long time-series data, but the longer791

the time series the less likely that all parameters are constant. Canova et al. (2015) address792

this issue and document that this is important for the model of Gertler and Karadi (2010).34
793

Appendix B.2. Dealing with misspecification: Other approaches794

Richer models. Exogenous random disturbances are typically assumed not to be corre-795

lated with each other. This is a convenient assumption, because allowing for interaction796

between the different exogenous disturbances would substantially increase the number of pa-797

rameters to be estimated given that DSGE typically have a several exogenous disturbances.798

However, it seems quite plausible that such disturbances are correlated. Del Negro and799

Schorfheide (2009) and Cúrdia and Reis (2012) deal with this possible misspecification and800

allow for more general processes to describe the behavior of the exogenous random distur-801

bances.802

Cúrdia and Reis (2012) find that this generalization has nontrivial consequences for the803

properties of the model. For example, the impact of a monetary policy shock on output804

is only half as big when the exogenous random variables are allowed to be correlated and805

the medium-term impact of a government spending shock switches from being positive to806

negative.35
807

Enriching a model by allowing for additional features and more general specifications is808

likely to reduce misspecification. However, richer models typically have more parameters,809

which will reduce the efficiency of the estimation by reducing the number of degrees of810

freedom.811

Multiple models. Another way to deal with potential misspecification is to consider a812

set of different DSGE models. These could be compared informally or formally using, for813

example, relative marginal likelihoods or model averaging.36 However, given the difficulty814

of modeling macroeconomic phenomena, it seems likely that all models in a set of DSGE815

models are subject to at least some type of misspecification.816

Combining structural and reduced-form models. Ireland (2004) is an early paper that817

proposes a more general procedure to deal with possible misspecification when estimating a818

DSGE model even though the word misspecification is not used in the paper. Specifically,819

Ireland (2004) “... augments the DSGE model so that its residuals – meaning the movements820

34The literature cited in Canova et al. (2015) documents that this is an issue in a variety of DSGE models.
35Cúrdia and Reis (2012) still impose the standard assumption that the innovations of the shocks are

uncorrelated.
36See chapter 5 in An and Schorfheide (2007) for a detailed discussion.
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in the data that the theory cannot explain – are described by a VAR.” To understand this821

procedure, consider the following representation of the linearized solution of a DSGE model:822

st = Ast−1 +Bηt, (B.1)

yt = Cst−1 +Dηt, (B.2)

where st is a vector containing (endogenous and exogenous) state variables, yt is a vector
containing the observables, and ηt is a vector containing the innovations of the exogenous
random variables. Ireland (2004) proposes to augment the observation Equation (B.2) as
follows:

yt = Cst−1 +Dηt + ut (B.3a)

ut = Fut−1 + ξt (B.3b)

where ut captures the misspecification or incompleteness of the DSGE model. In his appli-823

cation, the structural equations are the policy rules from a standard Real Business Cycle824

(RBC) model with total factor productivity (TFP) as the only driving process. If the stan-825

dard deviation of ηt is equal to 0, then this procedure boils down to estimating a standard826

VAR.827

Note that the presence of the “missing elements” that are captured by ut is assumed to828

have no effect on that part of agents’ behavior that is described by the DSGE model, that is,829

the matrices A, B, C, and D. For this to be correct it must be true that the response of the830

economy to a TFP shock does not depend on the presence of other disturbances. One might831

think that such independence of a DSGE’s policy rule to the presence of other disturbances832

is only correct if the additional disturbances represent measurement error.37 However, this833

“independence” property is correct in linear(ized) models in the sense that the specification834

of the structural part given in Equations (B.1) and (B.2) does not depend on the presence of835

not included structural disturbances. It must be noted that the assumption that ut follows a836

first-order (or even a finite-order) VAR could very well be restrictive. Thus the reduced-form837

specification for ut could be misspecified as well.838

The most comprehensive methodology to deal with misspecified DSGE models is put for-
ward in Del Negro et al. (2007). Their starting point is a VAR specification of the observables.
That is,

yt =
K∑
k=1

Fkyt−1 +Gξt (B.4a)

E [ξtξ
′
t] = I. (B.4b)

The key idea of the DSGE-VAR estimation proposed in Del Negro et al. (2007) is to estimate839

37Although Ireland (2004) does not refer to the residual between model and data as measurement error,
other papers in the literature describing his procedure do. Examples are Del Negro and Schorfheide (2009)
and Cúrdia and Reis (2012).

48



this time series process with the prior distribution for F and Ω that is centered at the values840

implied by a DSGE model, F (Ψ) and G(Ψ), where Ψ is the vector containing the parameters841

of the DSGE model. The estimation procedure consists of jointly estimating Ψ, the structural842

parameters of the DSGE model, which pin down the prior for the VAR coefficients, and the843

VAR coefficients themselves.844

The precision of the prior of the VAR coefficients is controlled with a scalar parameter,845

λ. If λ is equal to ∞, then one estimates an unrestricted VAR and if λ is equal to 0, then846

the procedure boils down to estimating a DSGE without allowing for misspecification. The847

estimation is executed for different values of λ. To determine the optimal value for λ, the848

authors propose using the marginal data density, which compares in-sample fit with model849

complexity. If the restrictions imposed by the DSGE model are incorrect, then the procedure850

will put more weight on the VAR.851

As pointed out in Chari et al. (2008), DSGE models often do not imply a VAR represen-852

tation with a finite number of lags, unless all state variables are included. Thus, not only the853

DSGE, but also the VAR component of the DSGE-VAR procedure could be misspecified.854

Wedges. Yet another approach to deal with misspecification is to add “wedges” to specific855

model equations. This procedure was introduced in Chari et al. (2007). Inoue et al. (2015)856

use this setup to formally test for model misspecfication. A wedge may have different inter-857

pretations or possibly no simple interpretation. From an econometric point a view, wedges858

are not different from regular structural disturbances in how they affect time series proper-859

ties of the model. That is, they impose restrictions on the policy functions just as regular860

structural disturbances do and it matters crucially how one enters wedges. For example,861

the assumption that a wedge only enters one and not all model equations is a restriction.862

Although some wedges can enter more than one equation, wedges used in the literature only863

enter a few specific model equations chosen by the researcher a priori and – as pointed out864

in Inoue et al. (2015) – wedges can be introduced in many different ways. By contrast, ASDs865

appear in all equations. If one prefers a more concise specification, then the idea of our ag-866

nostic procedure indicates involves using a statistical model selection criterion not economic867

arguments.38
868

Appendix C. Additional discussion for Monte Carlo experiments869

This appendix starts by giving some additional information about our experiments and870

continues by providing additional results.871

38There may be valid economic or other reasoning to make additional restrictions. For example, in our
empirical application we give such motivation for our assumption that the ASDs appear in the flexible-price
block of the SW with the same coefficient as in the corresponding equation of the actual model. However,
such restrictions make the procedure less agnostic.
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Appendix C.1. Details872

We follow SW and do not estimate the depreciation rate, δ, the steady-state wage mark-873

up, µ, the steady-state level of government expenditures, g, the curvature in the Kimball874

goods-market aggregator, εp, and the curvature in the Kimball labor-market aggregator, εw.875

Since we use demeaned data, we also fix the trend growth rate, γ, the parameter controlling876

steady state hours, l, the parameter controlling steady state inflation, π, and the discount877

factor, β.878

We deviate in one aspect from SW and that is related to the parameter ρga, which879

captures the impact of the TFP structural disturbance on the government expenditures880

structural disturbance. We set this coefficient equal to zero in both the true dgp and in881

the empirical model. This implies that all structural disturbances are uncorrelated. This882

is a typical assumption and makes our misspecification experiment more transparent. As883

discussed below, the misspecification considered is related to the specification of the set of884

structural disturbances. If ρga 6= 0, then we would have to make additional choices whenever885

the misspecification involves either the TFP or the government spending shock. We explored886

some alternative cases in which ρga 6= 0 and found similar results.887

We adopt Maximum Likelihood estimation. This involves a nontrivial optimization given888

the complexity of the model and number of parameters to be estimated. However, our889

optimization problem is relatively well defined. The empirical model is very close to the true890

dgp. Moreover, we use the true parameter values as the initial conditions for the optimization891

routine and we specify bounds for the parameter values. These choices decrease computing892

time and also give a misspecified model the best possible chance to deliver estimates that893

are close to the truth. The innovation standard deviations of the disturbances are restricted894

to be in the interval [0, 10] and the coefficients of their time series process in the interval895

[0, 99]. Given our focus on misspecified disturbances, we want these intervals to be large.896

For the structural parameters we set the lower bound and the upper bound to the first and897

ninety-ninth percentile according to the SW prior, centered at the parameter values of the898

true dgp.899

Although the Monte Carlo experiments focus on ML estimation, we used a Bayesian model900

comparison for the exercise where we answered whether a researcher would in practice reject901

the wrong empirical specification when compared with the true one. We used a Bayesian ap-902

proach because Bayesian estimation is the dominant strategy to estimate DSGE models. For903

this comparison we restricted ourselves to 100 Monte Carlo replication, since each replication904

involves a computationally intensive MCMC procedure to trace the posterior.905

Our analysis has some features in common with Ferroni et al. (2015), but there are906

important differences. They only consider one specific misspecified empirical model whereas907

we consider a total of forty-two. Although they consider a limited Monte Carlo experiment908

(with 100 replications), the main discussion focuses on particular sample of 200 observations.909

Most importantly, their main focus is on the consequences of using an inverse gamma prior910

for parameters that could well be zero. Our focus is on the misspecification of the empirical911

model, not the specification of the prior.912
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Appendix C.2. Identification of structural parameters913

To properly evaluate the misspecification experiments of this paper, it is important that914

the estimated parameters are identified. If not, then any detected distortions of parameter915

estimates and implied model properties could be due to lack of identification and not mis-916

specification. We use the test proposed in Komunjer and Ng (2011) to check whether the917

parameters of the empirical specifications used in our experiments are identified. We will918

refer to this test as the KN test. This test provides both necessary and sufficient conditions919

for local identification under a set of weak conditions.39 It focuses on the state-space repre-920

sentation of the model and – in contrast to earlier identification tests – does not require the921

user to specify a set of particular autocovariances.40 The results document that parameters922

are identified in all experiments. In Appendix D.3, we document that weak identification is923

not an issue either.924

Identification of original Smets-Wouters estimation exercise. SW fix the values925

of five parameters: depreciation, δ, steady-state wage mark-up, µ, steady-state exogenous926

spending, g, curvature in the Kimball goods-market aggregator, εp, and curvature in the927

Kimball labor-market aggregator, εw. Komunjer and Ng (2011) consider the identification of928

the SW model, but their empirical specification is slightly different from the one of SW in929

that all variables are demeaned. By contrast, the data in the SW estimation exercise does930

contain information about the level, since the inflation rate and the nominal interest rate are931

in levels. Komunjer and Ng (2011) show that several subsets of the five parameter restrictions932

mentioned above are sufficient to obtain identification if the parameter controlling steady933

state hours, l, and the parameter controlling steady state inflation, π, are fixed as well. It934

makes sense that identification requires more restrictions when information about the levels935

is not used in the estimation.936

Identification of our specifications. The empirical and true specifications used in our937

Monte Carlo experiments have six structural disturbances, whereas the original SW empirical938

model has seven. This may imply that less parameters are identified. It is important that939

the parameters that we try to estimate are identified. If parameters are not identified, then940

different parameter combinations lead to the same criterion of fit used in the estimation, so it941

would not be surprising if parameter estimates are different for slightly different specifications.942

Consequently, we adopt the following conservative strategy to ensure identification. The943

KN test checks rank conditions of matrices and to see whether there is a singularity one944

needs to choose a tolerance criterion. We set the criterion at a level that is more strict than945

the one chosen by KN.41 We follow SW and fix the values of the five parameters mentioned946

above. In addition, we fix all parameters that have a direct effect on the means of variables,947

since we use demeaned variables in the estimation. The associated parameters are the trend948

39These are a stability condition and regularity conditions on the innovations.
40An example of such an earlier test is Iskrev (2010).
41We set“Tol” equal to 1e-2 instead of 1e-3 (a higher number means that the test is more difficult to pass).
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Table C.5: Komunjer and NG identification test.

required number 41 225 36 302 -

n ∆
S

Λ ∆
S

T ∆
S

U ∆
S

pass?
εa,t excluded 12 41 225 36 302 yes
εb,t excluded 12 41 225 36 302 yes
εg,t excluded 12 41 225 36 302 yes
εi,t excluded 12 41 225 36 302 yes
εr,t excluded 12 41 225 36 302 yes
εw,t excluded 13 41 225 36 302 yes
εp,t excluded 13 41 225 36 302 yes

Notes. Here, n is the number of restrictions, which includes the number of coefficients fixed in all experiments and the number

of coefficients in the law of motion of the excluded exogenous random variable that are all set to zero. ∆
S
Λ is a matrix that

contains the derivatives of all the vectorized elements in the state-space representation of the model (the A, B, C, D matrices
and the variance-covariance matrices) evaluated at the true parameter values. It is intuitive that this matrix needs to have full

rank for identification. But it is not sufficient. ∆
S
T and ∆

S
U are matrices with particular elements related to the state-space

representation. The matrix ∆
S

= [∆
S
Λ ∆

S
T ∆

S
U ] needs to have full rank to pass the KN test.

growth rate, γ, the parameter controlling steady state hours, l, the parameter controlling949

steady state inflation, π, and the discount factor, β.42 Finally, as discussed in Section 2.1,950

we fix the spillover from the productivity disturbance to exogenous spending and set it equal951

to zero.952

The results of the KN test are reported in Table C.5 and it indicates that the identification953

test is passed in all cases. That is, lack of identification is not driving the results in this paper.954

Appendix C.3. Additional results955

Figures C.6 and C.7 plot the histograms of the estimated χ2 statistics across Monte Carlo956

replications for the two experiments of Section 3 together with the theoretical (large-sample)957

χ2 distribution. The number of degrees of freedom is equal to 10. They document that the958

distribution of test statistics across Monte Carlo replications is quite close to the theoretical959

one.960

Tables C.6 and C.7 document detailed information on the distribution of parameter esti-961

mates for the two Monte Carlo experiments.962

42It is a conservative choice to fix all four, since identification only requires that two parameters are fixed
according to the test of Komunjer and Ng (2011).
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Figure C.6: Likelihood ratio test agnostic versus fully-specified model: First experiment

Notes. The figure plots the distribution of χ2 statistics of the first Monte Carlo experiment and the theoretical distribution
according to large sample theory. This Monte Carlo experiment corresponds to the case when the true dgp does not include a
monetary policy disturbance, but the empirical model leaves out the investment disturbance instead.
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Figure C.7: Likelihood ratio test agnostic versus fully-specified model: Second experiment

Notes. The figure plots the distribution of χ2 statistics of the first Monte Carlo experiment and the theoretical distribution
according to large sample theory. This Monte Carlo experiment corresponds to the case when the true dgp does not include a
TFP disturbance, but the empirical model leaves out the investment disturbance instead.
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Table C.6: Parameter estimates across Monte Carlo replications: First experiment

misspecified estimation ASD procedure SW specification
Truth LB UB 10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

α 0.19 0.07 0.31 0.07 0.07 0.08 0.10 0.14 0.15 0.18 0.21 0.23 0.26 0.15 0.17 0.20 0.22 0.24
σc 1.39 0.53 2.25 1.35 1.44 1.66 2.16 2.24 1.16 1.29 1.47 1.69 1.95 1.19 1.29 1.42 1.58 1.81
Φ 1.61 1.33 1.89 1.46 1.69 1.86 1.89 1.89 1.33 1.34 1.57 1.85 1.89 1.33 1.38 1.60 1.83 1.89
φ 5.48 1.99 8.97 3.42 5.03 6.48 8.05 8.87 3.18 3.78 4.59 5.63 6.74 3.80 4.27 4.91 5.55 6.24
λ 0.71 0.45 0.90 0.62 0.71 0.79 0.84 0.86 0.57 0.62 0.66 0.71 0.76 0.61 0.64 0.68 0.72 0.76
ξw 0.73 0.47 0.92 0.58 0.65 0.71 0.78 0.86 0.57 0.62 0.68 0.75 0.82 0.58 0.63 0.69 0.75 0.81
σ` 1.92 0.18 3.66 0.18 0.18 0.18 0.19 0.54 0.89 1.16 1.55 2.17 2.77 1.07 1.36 1.76 2.24 2.71
ξp 0.65 0.40 0.86 0.69 0.74 0.79 0.83 0.85 0.50 0.56 0.63 0.69 0.73 0.52 0.57 0.63 0.68 0.73
ιw 0.59 0.24 0.89 0.24 0.28 0.38 0.53 0.68 0.32 0.44 0.60 0.76 0.88 0.34 0.47 0.61 0.76 0.88
ιp 0.22 0.01 0.65 0.04 0.13 0.25 0.38 0.51 0.02 0.08 0.16 0.25 0.34 0.03 0.08 0.16 0.24 0.31
ψ 0.54 0.20 0.86 0.26 0.38 0.59 0.75 0.84 0.38 0.47 0.57 0.69 0.81 0.41 0.48 0.57 0.66 0.77
rπ 2.03 1.45 2.61 1.58 1.78 2.05 2.33 2.55 1.71 1.88 2.10 2.41 2.60 1.76 1.91 2.09 2.35 2.57
ρ 0.81 0.53 0.97 0.74 0.77 0.80 0.82 0.83 0.78 0.80 0.82 0.84 0.85 0.78 0.80 0.82 0.84 0.85
ry 0.08 -0.04 0.20 0.05 0.07 0.11 0.17 0.20 0.05 0.07 0.08 0.11 0.13 0.06 0.07 0.08 0.10 0.12

r∆y 0.22 0.10 0.34 0.11 0.15 0.17 0.18 0.19 0.19 0.21 0.22 0.23 0.24 0.20 0.21 0.22 0.23 0.24
ρa 0.95 0.00 0.99 0.60 0.93 0.95 0.96 0.96 0.88 0.92 0.94 0.95 0.96 0.90 0.93 0.94 0.96 0.96
ρb 0.18 0.00 0.99 0.03 0.08 0.16 0.27 0.75 0.03 0.08 0.14 0.20 0.26 0.04 0.09 0.15 0.21 0.26
ρg 0.97 0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.96 0.97 0.98 0.98 0.94 0.96 0.97 0.98 0.98
ρp 0.90 0.00 0.99 0.50 0.66 0.78 0.91 0.97 0.68 0.80 0.87 0.92 0.95 0.74 0.82 0.88 0.92 0.94
ρw 0.97 0.00 0.99 0.93 0.97 0.99 0.99 0.99 0.93 0.95 0.97 0.98 0.99 0.94 0.96 0.97 0.98 0.99
µp 0.74 0.00 0.99 0.21 0.38 0.64 0.86 0.94 0.31 0.48 0.62 0.73 0.80 0.38 0.51 0.64 0.73 0.80
µw 0.88 0.00 0.99 0.72 0.81 0.87 0.91 0.94 0.73 0.80 0.85 0.89 0.92 0.76 0.82 0.86 0.89 0.92
σa 0.45 0.00 10.00 0.62 0.70 0.85 1.05 1.22 0.35 0.38 0.42 0.48 0.53 0.37 0.39 0.44 0.48 0.53
σb 0.24 0.00 10.00 0.06 0.20 0.24 0.26 0.28 0.21 0.22 0.24 0.26 0.28 0.21 0.23 0.24 0.26 0.28
σg 0.52 0.00 10.00 0.51 0.53 0.55 0.57 0.59 0.48 0.49 0.52 0.54 0.56 0.48 0.50 0.52 0.54 0.56
σp 0.14 0.00 10.00 0.12 0.14 0.15 0.17 0.18 0.11 0.12 0.14 0.15 0.17 0.11 0.12 0.14 0.15 0.16
σw 0.24 0.00 10.00 0.19 0.20 0.22 0.24 0.25 0.21 0.23 0.24 0.26 0.28 0.21 0.23 0.25 0.26 0.28

Notes. The table provides information on the distribution of the indicated parameter across the Monte Carlo replications. See Table 1 for the definitions of the parameters. This
Monte Carlo experiment corresponds to the case when the true dgp does not include a monetary policy disturbance, but the empirical model leaves out the investment disturbance
instead.
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Table C.7: Parameter estimates across Monte Carlo replications: Second experiment

misspecified estimation ASD procedure SW specification
Truth LB UB 10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

α 0.19 0.07 0.31 0.09 0.12 0.16 0.21 0.26 0.14 0.18 0.21 0.25 0.29 0.14 0.17 0.20 0.23 0.26
σc 1.39 0.53 2.25 1.39 1.57 2.07 2.24 2.25 1.14 1.27 1.45 1.75 2.14 1.16 1.26 1.41 1.63 1.93
Φ 1.61 1.33 1.89 1.39 1.58 1.79 1.87 1.89 1.33 1.35 1.58 1.85 1.89 1.34 1.43 1.61 1.78 1.87
φ 5.48 1.99 8.97 4.09 4.99 6.23 7.43 8.48 3.29 3.85 4.57 5.43 6.54 3.85 4.34 4.98 5.64 6.44
λ 0.71 0.45 0.90 0.54 0.61 0.69 0.76 0.80 0.55 0.61 0.66 0.72 0.77 0.60 0.64 0.68 0.73 0.77
ξw 0.73 0.47 0.92 0.55 0.61 0.67 0.72 0.78 0.55 0.60 0.67 0.74 0.81 0.58 0.62 0.69 0.75 0.80
σ` 1.92 0.18 3.66 0.18 0.18 0.20 0.55 1.03 0.46 0.89 1.56 2.58 3.54 0.67 1.07 1.78 2.64 3.38
ξp 0.65 0.40 0.86 0.62 0.68 0.73 0.78 0.83 0.49 0.54 0.62 0.68 0.73 0.51 0.56 0.62 0.68 0.72
ιw 0.59 0.24 0.89 0.24 0.30 0.42 0.57 0.69 0.32 0.46 0.61 0.78 0.89 0.34 0.47 0.62 0.77 0.88
ιp 0.22 0.01 0.65 0.04 0.11 0.24 0.34 0.46 0.01 0.07 0.15 0.24 0.32 0.03 0.08 0.16 0.24 0.32
ψ 0.54 0.20 0.86 0.30 0.40 0.53 0.67 0.80 0.37 0.45 0.57 0.70 0.81 0.40 0.48 0.58 0.68 0.79
rπ 2.03 1.45 2.61 1.74 2.04 2.32 2.54 2.60 1.59 1.86 2.28 2.59 2.61 1.68 1.89 2.22 2.52 2.60
ρ 0.81 0.53 0.97 0.79 0.81 0.84 0.86 0.87 0.73 0.77 0.81 0.84 0.86 0.76 0.78 0.81 0.84 0.85
ry 0.08 -0.04 0.20 0.08 0.10 0.13 0.16 0.19 0.04 0.06 0.10 0.12 0.14 0.05 0.07 0.09 0.12 0.13

r∆y 0.22 0.10 0.34 0.11 0.13 0.17 0.20 0.22 0.17 0.19 0.23 0.26 0.29 0.17 0.20 0.22 0.25 0.28
ρb 0.18 0.00 0.99 0.07 0.14 0.22 0.33 0.53 0.02 0.08 0.14 0.21 0.26 0.04 0.09 0.15 0.21 0.26
ρg 0.97 0.00 0.99 0.98 0.99 0.99 0.99 0.99 0.94 0.96 0.97 0.98 0.98 0.94 0.96 0.97 0.98 0.98
ρr 0.12 0.00 0.99 0.00 0.00 0.02 0.06 0.10 0.00 0.04 0.11 0.18 0.23 0.01 0.05 0.11 0.17 0.22
ρp 0.90 0.00 0.99 0.48 0.65 0.78 0.91 0.97 0.74 0.82 0.89 0.92 0.95 0.78 0.84 0.89 0.92 0.95
ρw 0.97 0.00 0.99 0.94 0.96 0.97 0.98 0.99 0.93 0.95 0.97 0.98 0.99 0.94 0.96 0.97 0.98 0.98
µp 0.74 0.00 0.99 0.17 0.37 0.61 0.84 0.92 0.36 0.50 0.62 0.72 0.81 0.44 0.55 0.65 0.73 0.80
µw 0.88 0.00 0.99 0.73 0.79 0.84 0.89 0.91 0.73 0.79 0.84 0.89 0.91 0.76 0.81 0.85 0.89 0.92
σb 0.24 0.00 10.00 0.14 0.19 0.22 0.24 0.26 0.20 0.22 0.24 0.26 0.28 0.21 0.23 0.24 0.26 0.28
σg 0.52 0.00 10.00 0.49 0.51 0.53 0.55 0.57 0.47 0.49 0.51 0.54 0.56 0.48 0.50 0.52 0.54 0.56
σr 0.24 0.00 10.00 0.22 0.23 0.24 0.25 0.26 0.22 0.23 0.24 0.25 0.26 0.22 0.23 0.24 0.25 0.26
σp 0.14 0.00 10.00 0.12 0.14 0.15 0.16 0.18 0.11 0.12 0.14 0.15 0.17 0.11 0.12 0.14 0.15 0.16
σw 0.24 0.00 10.00 0.20 0.21 0.23 0.24 0.26 0.21 0.23 0.25 0.27 0.28 0.22 0.23 0.25 0.27 0.28

Notes. The table provides information on the distribution of the indicated parameter across the Monte Carlo replications. See Table 1 for the definitions of the parameters. This
Monte Carlo experiment corresponds to the case when the true dgp does not include a TFP disturbance, but the empirical model leaves out the investment disturbance instead.
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Appendix D. Large sample consequences of misspecification963

ASDs are designed to deal with the misspecification of structural disturbances. In Section964

3, we used Monte Carlo experiments to document that the consequences of such misspecifi-965

cation for parameter estimates can be quite severe.966

The analysis of that section has some drawbacks. First, the results are subject to sampling967

variation, since the sample size was chosen to resemble the length of data series available968

to macroeconomists in practice. Consequently, the documented deviations from the truth969

may not be due to misspecification solely but also to small sample issues such as bias and,970

or course, sampling uncertainty. Second, the analysis only focused on the consequences971

for parameter estimates whereas it also would be interesting to look at model properties972

as implied by parameter estimates. Examples are impulse response functions (IRFs) and973

moments of model variables. Third, we only discussed the results for two representative974

experiments, whereas there are forty-two possible experiments.975

In this appendix, we study the consequences of misspecification in greater detail. First,976

by using samples of 100,000 observations we reduce sampling variation to negligible levels.977

Thus, all deviations from the true values are due to misspecification. Second, in addition to978

parameter estimates we also look at implied moments of model variables and implied IRFs.979

Third, we consider all possible forty-two experiments. In all other aspects, the experiment is980

identical to the one described in Section 3.981

Appendix D.1. Consequences for parameter values982

Table D.8 reports some key percentiles (across experiments) to characterize the range of983

the estimated parameter values. When constructing percentiles, we only consider parameters984

that are in both the true and empirical specification.43 All parameter estimates are affected985

by misspecification to some extent. Moreover, the minor misspecifications considered in these986

forty-two experiments lead to massive distortions for several parameters.987

The median parameter estimates (across experiments) are relatively close to the true pa-988

rameter values. Thus, our choice of experiments does not favor bias in a particular direction.989

There is one exception. The median value of the estimated standard deviation of the pro-990

ductivity disturbance innovation, σa, is equal to 0.92 compared to a true value of 0.45. The991

reason is that this disturbance often “absorbs” the variation of the disturbance that is not992

included in the empirical specification. Thus, the disturbance that is wrongly included in the993

empirical specification does not necessarily fulfill this role.994

Even if we exclude cases for which the estimates fall in the bottom or top 10%, then we995

find that estimates are substantially different from their true value for many parameters. For996

example, for the labor supply elasticity with respect to the real wage, σl, the 10th percentile997

is equal to 0.18 and the 90th percentile is equal to 3.66, compared with a true value of998

43Specifically, for the parameters of the exogenous random processes, the experiments in which the dis-
turbance is part of the empirical model – but not part of the true dgp – are excluded from the calculations
of the percentiles.
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Table D.8: Parameter values: Point estimates across misspecification experiments

Imposed Imposed
Truth Min Min 10% 25% Median 75% 90% Max Max

α 0.19 0.07 0.07 0.11 0.17 0.19 0.20 0.23 0.31 0.31
σc 1.39 0.53 0.53 0.78 1.14 1.35 1.60 1.82 2.25 2.25
Φ 1.61 1.33 1.33 1.33 1.53 1.77 1.89 1.89 1.89 1.89
φ 5.48 1.99 2.71 3.59 5.47 7.38 8.97 8.97 8.97 8.97
λ 0.71 0.45 0.45 0.59 0.71 0.74 0.84 0.89 0.90 0.90
ξw 0.73 0.47 0.50 0.67 0.73 0.75 0.82 0.87 0.91 0.92
σ` 1.92 0.18 0.18 0.18 0.52 1.87 2.71 3.66 3.66 3.66
ξp 0.65 0.40 0.53 0.60 0.65 0.78 0.86 0.86 0.86 0.86
ιw 0.59 0.24 0.24 0.27 0.38 0.58 0.61 0.80 0.89 0.89
ιp 0.22 0.01 0.01 0.01 0.10 0.22 0.32 0.48 0.63 0.65
ψ 0.54 0.20 0.20 0.20 0.42 0.54 0.68 0.86 0.86 0.86
rπ 2.03 1.45 1.45 1.45 1.71 2.07 2.39 2.61 2.61 2.61
ρ 0.81 0.53 0.62 0.73 0.79 0.81 0.85 0.88 0.92 0.97
ry 0.08 -0.04 -0.04 0.01 0.05 0.09 0.16 0.20 0.20 0.20
r∆y 0.22 0.10 0.10 0.10 0.10 0.20 0.24 0.34 0.34 0.34

ρa 0.95 0.00 0.50 0.82 0.92 0.96 0.98 0.99 0.99 0.99
ρb 0.18 0.00 0.04 0.09 0.13 0.17 0.26 0.36 0.80 0.99
ρg 0.97 0.00 0.94 0.96 0.97 0.97 0.99 0.99 0.99 0.99
ρI 0.71 0.00 0.57 0.60 0.68 0.71 0.78 0.84 0.95 0.99
ρr 0.12 0.00 0.01 0.06 0.11 0.13 0.18 0.33 0.50 0.99
ρp 0.90 0.00 0.70 0.77 0.84 0.89 0.93 0.96 0.98 0.99
ρw 0.97 0.00 0.93 0.95 0.97 0.97 0.98 0.99 0.99 0.99
µp 0.74 0.00 0.08 0.22 0.43 0.73 0.82 0.91 0.95 0.99
µw 0.88 0.00 0.00 0.00 0.87 0.89 0.92 0.96 0.98 0.99

σa 0.45 0.00 0.42 0.47 0.67 0.92 1.49 2.57 3.20 10
σb 0.24 0.00 0.07 0.20 0.23 0.24 0.26 0.27 0.29 10
σg 0.52 0.00 0.52 0.52 0.52 0.53 0.55 0.56 0.57 10
σI 0.45 0.00 0.14 0.25 0.39 0.44 0.46 0.48 0.54 10
σr 0.24 0.00 0.22 0.23 0.23 0.24 0.26 0.28 0.31 10
σp 0.14 0.00 0.04 0.09 0.12 0.14 0.15 0.16 0.17 10
σw 0.24 0.00 0.18 0.20 0.21 0.24 0.25 0.29 0.31 10

Notes. This table gives information about the parameter estimates across the forty-two misspecification experiments. For
the parameters of the laws of motion of the disturbances, we exclude an experiment from the calculations of the percentiles
when the disturbance is part of the empirical model, but not part of the true dgp. The table also reports the bounds imposed
on parameter estimates. See Table 1 for the definitions of the parameters.
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1.92. For the parameter capturing the indexation of wages ιw, the same two percentiles999

are 0.27 and 0.80, compared with a true value of 0.59. For the parameter capturing the1000

indexation of prices, ιp, the two numbers are 0.01 and 0.48, compared with a true value of1001

0.22. When the two 10% tails are not excluded and the full range of estimates is considered,1002

then the range substantially increases. Specifically, the largest values are 0.89 and 0.63 for1003

the indexation of wages and prices, respectively.44 Recall that these distortions are solely1004

due to misspecification, not to small-sample variation.1005

For several parameters, the results remain bad when we narrow the range of outcomes1006

considered. For example, when we exclude the bottom and the top 25%, then the values for1007

σl, vary between 0.52 and 2.71 compared with a true value of 1.92. The results are also quite1008

bad for φ, the elasticity in the capital adjustment cost function, for which the 25th percentile1009

is equal to 5.47 and the 75th percentile is equal to 8.97.1010

Appendix D.2. Consequences for model properties1011

The previous section documents that misspecification can lead to large distortions in1012

parameter values. Parameter estimates are often of interest in themselves. At least as1013

important are the properties of the estimated structural model. It could be that different1014

parameter configurations lead to similar model properties. In this section, we address this1015

by looking at implied moments and IRFs.1016

Appendix D.2.1. Implied model moments1017

We begin by documenting the consequences of model misspecification for implied model1018

moments using the misspecification setup described above. Table D.9 reports the range of1019

values for typical business cycle properties as implied by the estimated parameter values of the1020

forty-two experiments considered. Specifically, it reports standard deviations and correlation1021

coefficients relative to their true values. Thus, a value equal to 1 means that there is no1022

distortion. The column labeled “true value” reports the range of values the corresponding1023

moment has according to the true dgp.45
1024

Misspecification implies an upward bias for volatility in our experiments.46 This upward1025

bias could be specific to our particular type of misspecification. However, the observed1026

upward bias is consistent with the simple analytical example discussed in Appendix D.5.47
1027

44Parameter estimates are constrained to be in a range, and the largest estimate of the wage indexation
parameter is constrained by the imposed upper bound.

45Moments are not the same across experiments, since we adjust the standard deviations of the structural
disturbances to ensure that the wrongly omitted disturbance does not play an important role.

46Section Appendix D.1 documents an upward bias for σa, the standard deviation of the TFP disturbance.
Since one disturbance is missing from the empirical model, it is not surprising that there is a shift towards
some of the other disturbances. By contrast, here we find an upward bias for total variability.

47In Appendix D.5, we discuss a simple example which documents analytically how maximum likelihood
estimation of a misspecified model can lead to an arbitrarily large upward bias in the implied variance of an
observable.
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Table D.9: Moments: Ratio of implied value to truth across experiments with misspecification

True value Min 10% 25% Median 75% 90% Max
(across experiments) (estimates, scaled by true value)

Std(yt) [ 3.48 , 5.12 ] 0.51 0.78 0.92 1.03 1.64 4.46 6.03
Std(ct) [ 3.30 , 5.58 ] 0.45 0.76 0.92 1.03 1.81 4.12 6.62
Std(it) [ 9.73 , 12.94 ] 0.70 0.87 0.99 1.11 1.71 3.81 6.47
Std(rt) [ 0.52 , 0.61 ] 0.76 0.90 0.94 1.00 1.36 2.28 2.78
Std(πt) [ 0.37 , 0.54 ] 0.64 0.72 0.94 1.01 1.25 2.21 2.98
Std(wt) [ 2.13 , 2.70 ] 0.73 0.83 0.92 1.08 2.28 5.57 10.87

Corr(yt, ct) [ 0.65 , 0.94 ] 0.28 0.68 0.93 0.99 1.07 1.15 1.52
Corr(yt, it) [ 0.74 , 0.87 ] 0.69 0.83 0.95 1.00 1.10 1.16 1.29
Corr(ct, it) [ 0.63 , 0.89 ] -0.68 0.60 0.92 1.00 1.19 1.34 1.57
Corr(ct, rt) [ -0.65 , -0.35 ] -0.71 0.54 0.86 0.99 1.11 1.52 2.13
Corr(it, wt) [ 0.29 , 0.69 ] -1.52 0.10 0.64 1.07 1.49 1.99 3.28
Corr(it, πw) [ 0.51 , 0.80 ] 0.36 0.84 0.97 1.02 1.17 1.34 1.75

Notes. This table reports the outcomes across experiments for the indicated moment as implied by parameter estimates
relative to its true value. Thus a value equal to 1 indicates that there is no distortion due to misspecification. Each row
reports percentiles across our forty-two experiments. It also reports the range of values of the true moments across the
experiments. All moments considered are related to variables that are used in the estimation as observables.

The results are solely due to misspecification, since we use very large samples and our ML1028

estimator is consistent when the empirical model is correctly specified.1029

The overestimation of volatility is enormous in some cases. Even if we exclude the top1030

25%, then standard deviations can be multiples of the true standard deviation. For example,1031

the 75th percentile for the standard deviation of wages is 2.28 times its true value. This ratio1032

increases to 5.57 when we only exclude the top 10%. The 90th percentiles for the consumption1033

and output standard deviation ratios are 4.12 and 4.46, which also indicates massive over-1034

prediction. The 90th percentile for investment is equal to 3.81 and in the worst experiment the1035

implied standard deviation is 6.47 times as big as the true value. By contrast, the values in1036

the lower tail are less drastic. Excluding the bottom 10%, we find that the largest distortions1037

are found for inflation for which the 10th percentile is 0.72, that is, implied volatility is 28%1038

below its true value. If we consider all experiments, then the smallest ratio is equal to 0.45,1039

which is found for the implied standard deviation of consumption.1040

Misspecification also has large quantitative implications for correlation coefficients. In1041

fact, the sign of the correlation coefficient as implied by parameter estimates turns out to be1042

different from its sample analogue in several cases. This would not be a big deal if the two1043

correlation coefficients are both close to zero. But there are also cases in which the implied1044

correlation coefficient according to the estimated empirical model and the true correlation1045
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coefficient are both large in absolute value and differ in sign.48,49
1046

Appendix D.2.2. Impulse response functions (IRFs)1047

To conclude the discussion on the consequences of misspecification, we document that1048

misspecification can also have a large impact on impulse response functions. There are many1049

IRFs to consider. Figure D.8 plots for three IRFs the outcomes across the experiments and1050

documents that the distortions can be large. We exclude the cases when the disturbance1051

of interest is in the empirical specification, but not part of the true dgp. It would not be1052

surprising if these are different.50 Thus, the disturbance of interest is part of the true dgp as1053

well as the empirical model for all three cases considered.1054

Figure D.8a plots the response of output to a TFP disturbance. This is obviously a key1055

characteristic of the model. The black line plots the true IRF and the grey lines plot the1056

IRFs as implied by the empirical model for the different experiments. All IRFs are based the1057

same size shock.51 If the grey lines are close to the black line, then misspecification of the1058

empirical model has only minor consequences for the IRF considered. The sign of the IRF1059

is virtually always correct and TFP disturbances always have a noticeable positive impact1060

on aggregate output.52 Nevertheless, the figure documents that there are large differences in1061

terms of initial impact, overall magnitude, shape, and persistence.1062

Figure D.8b plots the response of the real wage to a monetary policy shock. This is clearly1063

the kind of model property one would want to get right when analyzing monetary policy. The1064

figure shows again a wide variety of responses across the different empirical specifications.1065

Whereas the true response is substantial, there are several empirical specifications that pre-1066

dict a very small change. There are also a few specifications that give a much larger response.1067

We want to reemphasize that the plotted IRFs are for a disturbance that is correctly included1068

in the empirical model.1069

Figure D.8c reports the results for the inflation IRF of an investment-specific shock. For1070

most experiments the IRFs display a similar pattern, but there are important differences in1071

terms of magnitude. For three experiments, however, the IRFs are completely at odds with1072

the true IRF. Whereas the true IRF is positive and has reverted back to zero after twenty1073

periods, the IRFs implied by these three misspecified empirical models are negative and1074

indicate larger volatility and more persistence. Again, relatively small changes in parameter1075

48A striking example is the experiment in which the government disturbance is not present in the true
dgp and the empirical model excludes the risk-premium disturbance instead. The true correlation between
consumption and investment is equal to 0.67 whereas the one implied by the estimated model is equal to
-0.41.

49The smallest correlation coefficient (in absolute value) according to the true model is 0.29, so any sign
change implies a nontrivial change in the correlation coefficient.

50Also, we cannot calculate IRFs for a particular disturbance if that disturbance is not part of the empirical
specification. This means that each figure plots IRFs for thirty-two cases.

51That is, one standard deviation according to the original SW model. Differences across IRFs are bigger
if we use the estimated standard deviations for the different experiments.

52In some experiments, the initial response is negative. However, its value is then very small.
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Figure D.8: IRFs according to true (black) and misspecified (grey) empirical models

(a) Output response to TFP shock
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(b) Wage response to monetary policy shock
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(c) Inflation response to investment shock
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Notes. The figure plots the true IRF (black)and the IRFs implied by the misspecified (grey) empirical models considered. The
results are based on a very large sample, so results are not due to small sample variation. These IRFs are for shocks that are
correctly included in the model. Also, we do not use estimated standard deviations, but use the same size shock for all IRFs.

values can change these IRFs such that they are much closer to the true IRF.53
1076

53Specifically, if σc, the parameter controlling curvature in the utility function and λ, the parameter
indicating the habit component in the utility function, are set equal to their true values, then these three
IRFs have a shape that is similar to the true IRF, that is, also predict a hump-shaped positive response.
The responses still differ somewhat from the truth in having a more delayed response and a more persistent
effect. The estimated values for σc in the three experiments are 0.65, 0.53, and 0.53, whereas the true value
if equal to 1.39. The estimated values for λ are equal to 0.86, 0.87, and 0.85, whereas the true value is equal
to 0.71.
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Appendix D.3. Is weak identification the cause?1077

In Appendix C.2, it was shown that all parameters are identified in all models consid-1078

ered.54 Moreover, we use a very large sample to estimate the parameters so the large range of1079

values for parameter estimates cannot be caused by samples being too short to be informa-1080

tive. Also, the finding that the different parameter values are associated with quite different1081

model properties indicates that the results discussed in this section are not due to parame-1082

ters not being identified. As a final check, we compare the values of the likelihood function1083

according to the misspecified model at the estimated values and the true values. When using1084

the true values, we do re-estimate the parameters of the exogenous random variables.55 The1085

smallest difference between the two log likelihood values is equal to 14.5 and there are only1086

four experiments for which the difference is less than 100. The mean (median) difference is1087

equal to 10, 371 (5501).56
1088

Appendix D.4. Choosing Monte Carlo experiments1089

A careful Monte Carlo experiment requires a sufficiently large number of replications. We1090

use 1,000. Each replication involves a computationally intensive optimization routine. This1091

means we would not be able to do a small-sample version of all 42 experiments in this ap-1092

pendix. The two we use in section 3 were chosen as follows. We ranked all experiments by the1093

likelihood value obtained with the misspecified specification relative to the likelihood value1094

obtained with the correct specification. The idea is that misspecification is less severe if the1095

difference in likelihood values is smaller. The first experiment chosen is the one correspond-1096

ing to the sixty-sixth percentile and the second is the one corresponding to the thirty-third1097

percentile.57 Thus, our experiments are neither the least nor the most problematic in terms1098

of misspecification.1099

Appendix D.5. An analytical example1100

In this section, we give a very simple example to indicate that misspecification can have1101

large distortive effects in the sense that implied properties of the model using the parameter1102

estimates can be at odds with the actual corresponding properties of the data that are used to1103

54All true specifications have one structural disturbance less than the original SW model. This turns out
not to matter for identification. In fact, estimated parameters remain identified when we do the identification
test for specifications with five disturbances that exclude the disturbance that is not part of the true dgp as
well as the one that is erroneously omitted from the empirical specification.

55This is a conservative choice, since differences in the likelihoods would be larger if these parameters are
not re-estimated.

56It is not surprising that across experiments, there are some for which the misspecification is smaller than
for others resulting in smaller differences between the two likelihood values. After all, our experiments are
not designed to find large misspecification. Our set is constructed using a simple variation in the set of the
original structural disturbances.

57The first (second) Monte Carlo experiment corresponds to the case when the true dgp does not include a
monetary policy (TFP) disturbance, but the empirical model leaves out the investment disturbance instead.
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estimate the parameters. The model is linear, and all variables have a Normal distribution.1104

Throughout this section, parameter estimates are based on population moments. Thus,1105

the results are not due to small sample variation. The estimation procedure is Maximum1106

Likelihood (ML).1107

More specifically, this example demonstrates that there can be massive differences between1108

the variances of observables as implied by the model using estimated parameter values and1109

the actual variances in the data set. This result is surprising since the ML estimator of1110

the variance of a given time series is the sample variance when the variable has a Normal1111

distribution. We will show that this is not necessarily true for implied variances when the1112

empirical model is misspecified.58
1113

True model. The true model is given by the following set of equations:1114

yt =

[
y1,t

y2,t

]
=

[
λ11 λ12

λ21 λ22

] [
ε1,t

ε2,t

]
= Λεt, (D.1)

E [εtε
′
t] =

[
σ2

1 0
0 σ2

2

]
, (D.2)

and we make the following assumption about the distribution of the error terms:1115

ε1,t ∼ N(0, σ2
1) and ε2,t ∼ N(0, σ2

2). (D.3)

Misspecification. The objective is to estimate the standard deviations of the structural1116

disturbances, σ2
1 and σ2

2. The researcher takes the value of Λ as given. The empirical model1117

is misspecified, because Λ 6= Λ is used instead of the true value.1118

Empirical specifications. We consider the following two empirical specifications:1119

Case 1: Empirical model given by

yt =

[
y1,t

y2,t

]
= Λεt, E [εtε

′
t] =

[
σ2

1 σ12

σ12 σ2
2

]
. (D.4)

58As a byproduct of this paper, we learned that there also can be large gaps between actual properties
of the data used and the corresponding implied properties according to the Maximum Likelihood estimates
of the model parameters when the DSGE model is correctly specified, but a data sample with finite length
is used. Since the objective of Maximum Likelihood is not to match moments, there is no reason why there
should be a close match, but we were surprised by the large magnitudes of the differences. For example,
using a sample of 1,000 observations generated by the SW model with seven disturbances and the correct
empirical specification, it is not unusual to find implied standard deviations for the observables that are three
to five times their data counterpart. Such differences will disappear as the sample size increases, since the
estimator is consistent, but such asymptotic results do not provide much assurance if there is a small sample
bias even at a relatively large sample size of 1,000 observations.
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Case 2: Empirical model given by

yt =

[
y1,t

y2,t

]
= Λεt, E [εtε

′
t] =

[
σ2

1 0
0 σ2

2

]
. (D.5)

Both empirical models are misspecified, because they use the wrong value of Λ. In the1120

first case, the empirical model allows the correlation between the two innovations to be non-1121

zero even though it is equal to zero according to the true data generating process. In the1122

second case, the empirical model imposes that the correlation is equal to zero, just as it is in1123

the true model.1124

Case 1: Wrong Λ and allow for wrong σ12. Since the model is linear and the shocks1125

have a normal distribution, the ML estimator of the variance-covariance matrix E [εtε
′
t], Σ̂ε,1126

is given by1127

Σ̂ε = Λ
−1

Σ̂′yΛ
−1′
. (D.6)

As mentioned above, we abstract from sampling variation and Σ̂′y is estimated using popula-1128

tion moments. This means that the ML estimator of Σ̂′ε is given by1129

Σ̂ε = Λ
−1E [yty

′
t] Λ
−1′

(D.7)

= Λ
−1

ΛΛ′Λ
−1′
. (D.8)

True versus implied variance. The purpose of this section is to document the conse-
quences of misspecification for the implied variance of the observable yt according to the
estimated model. The true variance-covariance matrix is given by:

Σtrue
y = E [yty

′
t] = ΛΛ′. (D.9)

The implied variance of yt according the researcher’s (misspecified) model, Σ̂y, is given by1130

Σ̂y = ΛΣ̂εΛ
′

(D.10)

= ΛΛ
−1

ΛΛ′Λ
−1′

Λ
′

(D.11)

= ΛΛ′ = Σtrue
y . (D.12)

Thus, the procedure actually generates the correct answer even though an incorrect empirical1131

specification is used. In this case, the estimated empirical model is misspecified for two1132

reasons, namely it has the wrong Λ and the estimated value of σ12 is not equal to its true value.1133

These have exactly offsetting effects in terms of their impact on the implied variance. Another1134

way to look at this result is the following. By allowing for a more flexible specification, i.e.,1135

a non-zero value for σ12, the researcher would get a better answer for the implied variance of1136

yt even though the flexibility implies that the estimated model is wrong in more dimensions.1137
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Case 2: Wrong Λ and correct σ12. Obtaining the estimate for Σ̂ε is just as easy as in
the previous case. Given Λ̂ and data for yt, one can calculate the values for εt and use these
to calculate the variance of εt and the implied variance of yt. The following is a complicated,
but useful way to express the outcome:

Σ̂ε =

[
1 0
0 0

]
Λ
−1

ΛΛ′Λ
−1′
[

1 0
0 0

]
+[

0 0
0 1

]
Λ
−1

ΛΛ′Λ
−1′
[

0 0
0 1

]
.

(D.13)

True versus implied variance. The implied variance of yt is equal to1138

Σ̂y =


Λ

[
1 0
0 0

]
Λ
−1

ΛΛ′Λ
−1′
[

1 0
0 0

]
Λ
′

+

Λ

[
0 0
0 1

]
Λ
−1

ΛΛ′Λ
−1′
[

0 0
0 1

]
Λ
′

 6= ΛΛ′ = Σtrue
y (D.14)

The reason Σ̂y 6= Σtrue
y is that the Λ terms do not cancel out. In our Monte Carlo

experiments with misspecified models, we find that there often are large gaps between the
variances of the observables used in the estimation and the corresponding variances as implied
by the model using the estimated parameters. Moreover, there is a bias. That is, the implied
variance is typically larger than the actual variance. Our Monte Carlo experiments are a lot
more complicated than this example, but this example may shed light on the coincidence of
high implied variances. Specifically, because the Λs do not cancel out, the expression for Σ̂y

contains terms like the following:

Λ

[
1 0
0 0

]
Λ
−1

=
1

λ11λ22 − λ12λ21

[
λ11λ22 −λ11λ12

λ21λ22 −λ12λ21

]
. (D.15)

This equation documents that the ratio of the implied variance relative to the true variance1139

could be arbitrarily large if the term in the denominator goes to zero.59 For a correctly1140

specified model this would not matter, since the small term in the denominator would then1141

be offset by an equally small term in the numerator. But this is not necessarily the case for1142

an incorrectly specified model.1143

59The opposite is less likely, since it would require values for the λij coefficients such that the combinations
appearing in square brackets are small, but the particular combination in the denominator is not. For example,
one cannot accomplish this by simply choosing small values for the λij terms.
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Appendix E. ASD procedure for the Smets-Wouters model1144

In this appendix, we provide further details on how the ASD procedure is implemented1145

in Section 4 and we provide additional results.1146

Appendix E.1. Including ASDs in SW equations1147

To apply the ASD procedure to the SW model, we adapt the Dynare program provided1148

by the authors.60 Adapting a Dynare program to add an agnostic disturbance is easy. Specif-1149

ically, for the first ASD, ε̃A,t, we do the following.1150

1. In the model block, we add Υ̃j,Aε̃A,t to the jth equation, where ε̃A,t is the agnostic1151

disturbance and Υ̃j,A the coefficient associated with the agnostic disturbance in the jth
1152

equation. Details are given below.61
1153

2. We add an equation to the model block that describes the law of motion for ε̃A,t. If the1154

agnostic disturbance replaces a regular structural disturbance, then this disturbance1155

should be taken out of the program.1156

3. Declare ε̃A,t as a variable and declare the elements of Υ̃j,A and the coefficients of the1157

law of motion for ε̃A,t as parameters.1158

4. Specify a prior for the elements of Υ̃j,A.1159

We do not add the agnostic disturbance to Equations (6) and (12) of the SW model,1160

because these equations just contain definitions for capacity utilization and the wage mark-1161

up, respectively.62 The set of equations for the SW model consists of two parts. The first1162

part models the flexible price economy and the second part models the actual economy with1163

sticky prices. One needs to model the flexible-price economy, because the flexible-price output1164

level is used to define the output gap, which is one of the arguments in the monetary policy1165

rule. In principle, one could let the agnostic disturbance enter the equations of the sticky-1166

price economy and the associated equations in the flexible-price economy with a different1167

coefficient.63 Given the minor role played by the flexible-price block, it doesn’t quite make1168

sense to introduce so many additional parameters. Moreover, structural disturbances would1169

enter the associated pair of equations in the same way in most economic models. Therefore,1170

we also restrict the agnostic disturbance to enter the associated equations in the same way.1171

60The program is available at https://www.aeaweb.org/articles?id=10.1257/aer.97.3.586 under the
“Download Data Set” link.

61The other two ASDs are added using the same procedure.
62Equation numbers refer to those in Smets and Wouters (2007). We do allow the agnostic disturbances to

affect the utilization rate and the wage mark-up directly by including it in the model equations that specify
their relationship with other model variables.

63The sticky-price block contains some equations, such as the monetary policy rule, that do not have a
counterpart in the flexible-price economy.
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The exception is SW Equation (13) because it captures both potential stickiness in wages1172

and the relationship between the wage rate and its mark-up.1173

Specifically, we add the agnostic disturbance to Equations (1), (2), (3), (4), (5), (7), (8),1174

(9), and (11) of the SW model and the associated equations of the flexible-price economy. We1175

also add it to Equation (13) in both the flexible and the sticky-price part of the model, but1176

here we allow coefficients to differ. In addition, we add the agnostic disturbance to Equations1177

(10) and (14) which do not have a counterpart in the flexible-price economy. This means1178

that Υ̃·,A has thirteen elements. The last coefficient associated with the agnostic disturbance1179

is the autoregressive coefficient of its law of motion. The standard deviation of the agnostic1180

disturbance is normalized to be equal to 1.1181

Additional information. The SW specification uses consumption growth as an observable1182

and has an equation that defines consumption growth. Allowing an agnostic disturbance1183

to affect this equation would capture measurement error (which would be correlated with1184

structural disturbances if this ASD also appears in other model equations with a non-zero1185

coefficient). We do not explore this possibility to keep the analysis parsimonious and to stay1186

close the SW approach, which does not allow for measurement error.1187

As pointed out in the main text, the prior mean of ε̃A,t and ε̃B,t are set equal to associated1188

values of εb,t and εi,t. For example, suppose we use the ASD procedure to test the restrictions1189

of the risk-premium disturbance by replacing it with an ASD. The risk-premium disturbance1190

appears in two equations, namely the consumption/bond Euler equation and the capital-1191

valuation equation. The prior means of the reduced-form agnostic coefficients for these1192

two equations are set equal to the values according to the SW restrictions with structural1193

parameters evaluated at their prior means. The reduced-form coefficients associated with1194

the other equations have a prior mean equal to zero. Having a non-zero prior has a practical1195

advantage. The signs of the coefficients of an agnostic disturbance are not identified. That is,1196

one can switch the signs of the coefficients of an ASD as long as one does it for all coefficients.1197

A necessary consequence of its agnostic nature is that the sign of an ASD has no a priori1198

meaning. If the prior means of all ASD coefficients are zero, then the ASD coefficients can1199

flip sign for different runs of the MCMC procedure.1200

Appendix E.2. Model selection procedures1201

Which structural disturbances to include? The first stage of the model selection pro-1202

cedure is to decide which regular and agnostic structural disturbances to include. Specifically,1203

we compare a set of models that do or do not include the risk-premium disturbance, that do1204

or do not include the investment disturbance, and that include one, two, or three ASDs.64 We1205

still allow the risk-premium and the investment-specific disturbance to appear in the final set1206

even though replacement by an ASD improved model fit. The reason is that a specification1207

64To estimate the model with all seven observables, an empirical specification with only one ASD would
need either the risk-premium or the investment disturbance to avoid a singularity.
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with both ASDs and these regular disturbances could perform even better.1208

Table E.10: Model selection procedure for SW model: Step 1

regular structural agnostic marginal
εb,t εi,t ε̃A,t ε̃B,t ε̃C,t data density

no no yes yes no -906.85
no no yes yes yes -925.55
no yes yes no no -908.79
no yes yes yes no -907.46
no yes yes yes yes -922.94
yes no no yes no -919.81
yes no yes yes no -907.32
yes no yes yes yes -921.71
yes yes no no no -922.40
yes yes yes no no -909.35
yes yes no yes no -920.26
yes yes yes yes no -908.09
yes yes yes yes yes -922.82

Notes. The table reports the marginal data density for different empiri-
cal specifications regarding three agnostic disturbances and the two distur-
bances that are misspecified, that is, the risk-premium disturbance, εb,t, and
the investment disturbance, εi,t. The number in bold indicates the highest
outcome.

Table E.10 reports the results. It shows that the model with the highest marginal data1209

density is one with two agnostic disturbances, without the SW risk-premium, and without1210

the SW investment-specific disturbance. Another indication that there is no need for these1211

two SW structural disturbances is that their role in terms of explaining variation in the data1212

is very small when agnostic disturbances are included. According to the (unconditional)1213

variance decomposition of the estimated SW model, the risk-premium disturbance is espe-1214

cially important for the price of capital, consumption growth, and output growth explaining1215

45.4%, 61.2%, and 22.1% of total variability, respectively. It only plays a minor role for other1216

variables. When agnostic disturbances are added, then these three numbers drop to 3.88%,1217

3.88%, and 2.05%, respectively.65 The reduction in the role of the investment disturbance is1218

even stronger. In the SW model, the investment disturbance plays a quantitatively important1219

role for many variables. For investment growth it even explains 82.1% of the volatility. With1220

agnostic disturbances added, its role becomes minuscule. Even for investment growth it only1221

explains 0.31%.1222

Obtaining a concise ASD specification. To interpret ASDs, we could use the best1223

specification found so far. However, interpretation of an ASD is easier when the specification1224

is more concise. To determine whether an agnostic disturbance should be excluded from1225

65These numbers are based on the specification with two ASDs and all seven SW structural disturbances
using posterior mode estimates.
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some equations, we implement model selection procedures using the marginal data density1226

as the criterion of fit. This statistic increases when fit improves, but also penalizes additional1227

parameters.1228

We consider both a specific-to-general procedure and a general-to-specific procedure and1229

we apply the procedure for the specifications with two and three ASDs.66 The details of these1230

procedures are described further below. The specific-to-general procedure with three ASDs1231

leads to the highest MDD and the selected outcome will be our preferred empirical model. The1232

specific-to-general procedure with two ASDs and the general-to-specific procedure with two1233

ASDs lead to slightly lower MDDs.67 Moreover, the models selected by these three procedures1234

are very similar. Specifically, the additional ASD in the specification with three ASDs only1235

plays a minor role. The zero restrictions imposed for the other two ASDs are not exactly the1236

same, but the differences are due to coefficients that turn out to be small. As documented in1237

Appendix E.3, the estimates of the parameters are similar and the estimates obtained with1238

these three empirical specifications imply similar model properties. The general-to-specific1239

procedure with three ASDs leads to a specification that has a much lower MDD.68
1240

In our preferred specification, the first agnostic disturbance enters eight of the thirteen1241

equations, the second in three, and the third in five. By contrast, the original SW risk-1242

premium and the investment-specific disturbance appear in only two.1243

Details of the model selection procedures. The general-to-specific model selection1244

procedure starts with the specification in which the agnostic disturbances are allowed to1245

enter each model equation. It then calculates the marginal data densities for all possible1246

specifications in which the ASD is not allowed to enter one of the model equations. Thus, we1247

estimate a set of models, each having one less coefficient. If none of the specifications lead1248

to a better fit, then the procedure stops. If improvements are found, then the procedure is1249

repeated using the specification that led to the biggest improvement as the benchmark.1250

The specific-to-general procedure starts with the specifications in which each of the two1251

ASDs are allowed to enter only one model equation. To avoid a singularity, one cannot1252

66An informal alternative selection procedure would be the following. One starts at the same point as
the general-to-specific procedure, that is, with ASDs included in every equation. The marginal posteriors of
the agnostic coefficients provides information on the lack of importance of different agnostic coefficients and
may provide the researcher promising combinations of zero restrictions to impose. In fact, the posteriors for
the coefficients with the fully unrestricted ASD specifications are very predictive of the equations selected by
the specific-to-general procedures for this application. Of course, there are good reasons why this informal
procedure is not a generally accepted model selection procedure and we cannot expect this to always work
well.

67The specific-to-general procedure generates an MDD equal to −892.92 with two ASDs and −890.76 with
three. The general-to-specific with two ASDs results in an MDD of −894.94.

68Namely, -909.48. The general-to-specific procedure already stops after two steps. That is, the procedure
does not detect that imposing multiple restrictions simultaneously does lead to substantial improvements.
One has to impose some structure on any model selection procedure, because it would be impossible to
consider all possible combinations. That is, one has to give instructions on what paths to follow and which
ones to ignore. But this means that the model selection procedure may not find the best model. This
motivates our use of different model selection criteria.
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start with a more parsimonious model.69 In the next step, we estimate a set of models in1253

which one of the ASDs is added to one equation and, thus, one additional parameter is1254

estimated. The procedure stops if none of the specifications leads to an improvement. If1255

there is an improvement, then the specification with the largest improvement becomes the1256

next benchmark and the procedure is repeated.1257

Why not consider even more general specifications? Although our model selection1258

procedures consider a rich set of models, they are not the most general. Unfortunately, there1259

are practical limitations to what is feasible. Five SW disturbance are always included in1260

our specifications. The most ideal setup would be flexible in this dimension as well and not1261

safeguard any of the seven SW regular disturbances and allow for the possibility of including1262

seven ASDs (or more). With such a setup all SW disturbances could be replaced by an ASD.1263

The first problem one would have to deal with is that identification of structural parameters1264

is likely to limit the number of regular structural disturbances one can replace with ASDs.1265

Let us consider a simple setup in which there are seven equations for seven state variables1266

and all state variables are observables. Moreover, each equation has one regular structural1267

disturbance. A general-to-specific procedure would be complicated since the first-stage model1268

would have a large number of coefficients to estimate. Specifically, if all seven ASDs appear in1269

all equations, then one needs to estimate forty-nine reduced-form coefficients. One may need1270

a rich data set to identify all of them. In our application, the number of coefficients would be1271

equal to ninety-one, since we have thirteen equations. The specific-to-general procedure faces1272

the problem that each specification needs at least seven disturbances to avoid singularities.1273

This means that there are a large number of different models one can start with. For the1274

simple setup with seven equations described above, this would mean that there are already1275

27 = 128 different models to consider in the first round alone.1276

Different prior for ASD coefficients. When we narrow the prior of the agnostic coeffi-1277

cients by reducing the standard deviation to 0.1, then the restrictions of the monetary policy1278

disturbance are also rejected. But the increase in the marginal data density is relatively1279

small, namely from -922.40 to -920.82. The less informed prior of the main text is more1280

consistent with the idea of the ASDs being agnostic disturbances.1281

Appendix E.3. Additional results1282

Correlation of the estimated innovations. Tables E.11 and E.12 report the contem-1283

poraneous correlation coefficients of the estimated innovations for the ASD and SW specifi-1284

cation, respectively. We use the posterior mean estimates to construct the smoothed shocks.1285

For the SW specification with seven innovations, nine correlation coefficients are significantly1286

69The posteriors of the ASD coefficients in the fully agnostic model provide clear evidence that one of the
ASDs is very important for the bond Euler equation and one for the investment Euler equation. So these are
natural choices.
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different from zero at the 10% or lower level. For the ASD specification with eight innova-1287

tions, four coefficients are significant and only two when we exclude the eighth innovation1288

associated with ε̃C,t.1289

Table E.11: Cross-correlation of innovations: SW

ηa ηg ηr ηp ηw ηb ηi
ηa . 0.010 -0.024 -0.135* 0.150 0.116 -0.260**
ηg . . 0.166** 0.218** -0.160** -0.262** -0.074
ηr . . . -0.056 -0.048 0.186* 0.037
ηp . . . . -0.098 -0.221** 0.070
ηw . . . . . -0.019 -0.189**
ηb . . . . . . 0.152

Notes. * (**) indicates significant at the 10% (5%) level. Standard errors are calculated using
the VARHAC estimator of Den Haan and Levin (1997) which corrects for serial correlation.

Table E.12: Cross-correlation of innovations: ASD

η̃a η̃g η̃r η̃p η̃w η̃A η̃B η̃C
η̃a . 0.027 0.010 0.006 0.103 0.009 -0.088 0.066
η̃g . . 0.150 0.073 0.189** 0.041 -0.049 -0.116
η̃r . . . -0.054 -0.014 -0.029 -0.043 -0.047
η̃p . . . . 0.260** -0.021 0.011 -0.176**
η̃w . . . . . -0.051 0.038 0.629**
η̃A . . . . . . 0.062 0.003
η̃B . . . . . . . -0.153

Notes. * (**) indicates significant at the 10% (5%) level. Standard errors are calculated using
the VARHAC estimator of Den Haan and Levin (1997) which corrects for serial correlation.

Table E.13: Auto-correlation of innovations

ASD SW
η̃a -0.060 ηa -0.040
η̃g -0.024 ηg -0.182**
η̃r -0.170 ηr -0.013
η̃p -0.121 ηp -0.077*
η̃w 0.069 ηw -0.043
η̃A -0.069 ηb -0.071*
η̃B -0.155** ηi -0.148**
η̃C -0.245**

Notes. * (**) indicates significant at the 10% (5%) level. Stan-
dard errors are calculated using the VARHAC estimator of
Den Haan and Levin (1997) which corrects for serial correlation.

Table E.13 reports the auto-correlation coefficients for both empirical specifications.1290

Again the ASD specification does quite a bit better with only two significant coefficients1291
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(at the 10% level) for its eight innovations compared to four of the seven for the SW specifi-1292

cation.1293

Impact on parameter estimates and model properties. Table E.14 documents there1294

are several differences between the estimated values of the structural parameters obtained1295

with the fully structural SW specification and our preferred agnostic specification with three1296

ASDs. For example, the inflation coefficient in the Taylor rule is equal to 2.05 in the SW1297

specification and 1.77 in ours.70 The SW estimate is right at the upper bound of our 90%1298

highest posterior density (HPD) interval. The SW mean estimate for the parameter charac-1299

terizing the share of fixed cost in production is equal to 1.61 which is quite a bit higher than1300

our mean estimate of 1.47 and outside our 90% HPD interval. Also, the mean posterior value1301

of the MA coefficient of the wage mark-up disturbance is equal to 0.85 according to the SW1302

specification and 0.59 according to ours. Our mean estimate for the standard deviation of1303

this disturbance is roughly a third of the SW estimate.1304

Although there are some nontrivial differences, they are relatively small and the IRFs1305

of the five regular structural disturbances that are included in both specifications are very1306

similar for the two empirical models. The same is true when we consider the role of these1307

five disturbances for the variance decomposition. Details are given in Tables E.15 and E.16.1308

One nontrivial change is the role of the productivity disturbance for output growth, which is1309

16.1% according to SW and 22.2% according to ours. Although the differences seem minor1310

if we consider the five structural disturbances in isolation, the combined role changes quite a1311

bit for some variables. For example, the combined role of these five structural disturbances1312

for investment (amount of capital used) is equal to 55.5% (74.1%) for the SW specification1313

and 68.7% (92.6%) for our preferred specification.1314

70We report posterior mean estimates unless indicated otherwise.
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Table E.14: Posterior Means

Parameter Original SW Agnostic: 2 ASDs Agnostic: 3 ASDs
concise unrestricted concise unrestricted

α 0.1903 0.2044 0.1878 0.1877 0.2089
σc 1.3889 1.4657 1.4535 1.4618 1.4772
Φ 1.6083 1.5211 1.5242 1.4741 1.4762
φ 5.7405 5.3843 4.4031 5.3425 4.6933
λ 0.7136 0.6544 0.7055 0.6679 0.6930
ξw 0.7066 0.6660 0.6706 0.7268 0.6453
σ` 1.8458 1.9094 1.7733 2.0770 1.5916
ξp 0.6541 0.6566 0.6981 0.6412 0.6902
ιw 0.5783 0.5556 0.5432 0.5077 0.5557
ιp 0.2389 0.2010 0.1997 0.1871 0.1891
ψ 0.5426 0.5345 0.5049 0.5283 0.3176
rπ 2.0469 1.7676 1.7797 1.7746 1.7438
ρ 0.8105 0.7933 0.8082 0.8018 0.8032
ry 0.0887 0.0725 0.0860 0.0787 0.0819
r∆y 0.2237 0.1903 0.1703 0.1941 0.1608
ρa 0.9572 0.9555 0.9483 0.9532 0.9510
ρg 0.9764 0.9719 0.9710 0.9702 0.9018
ρr 0.1464 0.1376 0.1219 0.1286 0.1227
ρp 0.8893 0.8975 0.8899 0.9262 0.9080
ρw 0.9680 0.9751 0.9790 0.9747 0.9822

ρb / ρA 0.2165 0.3344 0.6386 0.3239 0.4527
ρi / ρB 0.7116 0.6087 0.1660 0.6069 0.7232
ρC - - - 0.1865 0.1577
µp 0.6977 0.6764 0.6923 0.7166 0.7172
µw 0.8466 0.8241 0.8368 0.5945 0.8168
ρga 0.5184 0.6438 0.6525 0.6709 0.5448
σa 0.4586 0.4436 0.4421 0.4524 0.4411
σg 0.5299 0.4702 0.4689 0.4428 0.2285
σr 0.2449 0.2180 0.2171 0.2171 0.2114
σp 0.1403 0.1346 0.1299 0.1308 0.1311
σw 0.2427 0.2384 0.2361 0.0763 0.2249
σb 0.2398 - - - -
σi 0.4525 - - - -

100(β−1 − 1) 0.1648 0.1685 0.1826 0.1656 0.2038
γ̄ 0.4316 0.4349 0.4386 0.4367 0.4352
π̄ 0.7845 0.7483 0.7443 0.7391 0.7534
¯̀ 0.5617 0.1263 0.5216 0.1303 1.0360

MDD -922.40 -892.92 -906.85 -890.73 -925.50

Notes. MDD stands for marginal data density. The “concise” ASD specifications are the ones chosen by the specific-to-general
model selection procedure. The “unrestricted” ASD specifications are the fully agnostic with no zero restrictions. See Table 1
for the definitions of the parameters.
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Table E.15: Variance decomposition for observables across model specifications

εa εg εr εp εw εb/ε̃A εi/ε̃B ε̃C
∆y Original SW 16.10 28.88 6.17 4.55 6.39 22.12 15.79 -

Agnostic: 2 ASDs 20.29 27.01 7.15 6.04 8.12 20.53 10.85 -
Agnostic: 3 ASDs 22.21 24.60 7.04 4.66 10.30 21.33 8.04 1.82

∆c Original SW 5.29 2.10 11.56 4.40 14.54 61.17 0.95 -
Agnostic: 2 ASDs 3.26 1.62 11.29 4.56 15.33 62.34 1.61 -
Agnostic: 3 ASDs 2.95 1.28 10.69 3.37 17.90 61.67 2.03 0.1

∆i Original SW 6.01 0.84 2.47 3.80 2.37 2.46 82.05 -
Agnostic: 2 ASDs 4.86 0.91 2.19 4.24 2.76 12.25 72.80 -
Agnostic: 3 ASDs 5.49 1.02 2.38 3.80 3.94 12.55 70.01 0.81

` Original SW 1.94 10.34 3.15 6.23 67.66 2.52 8.15 -
Agnostic: 2 ASDs 1.29 6.84 2.47 6.04 71.23 1.56 10.57 -
Agnostic: 3 ASDs 1.08 4.33 2.15 4.44 79.70 1.29 4.97 2.03

∆w Original SW 4.53 0.09 1.48 29.47 61.61 0.79 2.03 -
Agnostic: 2 ASDs 3.82 0.22 2.43 30.84 54.34 3.02 5.34 -
Agnostic: 3 ASDs 4.09 0.11 1.25 25.18 13.32 2.23 0.38 53.45

π Original SW 3.92 1.00 4.25 27.64 59.43 0.58 3.18 -
Agnostic: 2 ASDs 3.16 1.28 4.43 24.91 61.96 0.79 3.46 -
Agnostic: 3 ASDs 2.95 0.90 3.28 16.87 70.46 0.68 3.96 0.91

r Original SW 10.09 3.90 14.67 7.17 38.42 7.40 18.34 -
Agnostic: 2 ASDs 6.50 3.49 9.77 5.79 38.96 21.49 14.02 -
Agnostic: 3 ASDs 5.70 2.77 8.18 4.33 48.61 17.29 12.47 0.65

Notes. The table provides the contributions (in percent) of the different structural disturbances to the variance of the observable
variables, across different model specifications. The ASD specifications are the ones chosen by our model selection procedure.
y stands for log output; c for log consumption; i for log investment; l for hours; w for log wage rate; π for inflation; and r for
nominal interest rate. Structural disturbances are defined as follows. εa: TFP; εg : government expenditures; εr: monetary policy;
εp:price mark-up; εw: wage mark-up; εb: risk premium; εi: investment; ε̃A: agnostic Euler; ε̃B : agnostic investment-modernization;
and ε̃C : capital-efficiency wage mark-up.
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Table E.16: Variance decomposition for additional variables across model specifications

εa εg εr εp εw εb/ε̃A εi/ε̃B ε̃C
yt Original SW 29.93 4.09 2.16 6.37 48.58 1.53 7.34 -

Agnostic: 2 ASDs 26.50 3.02 1.91 7.02 55.93 1.31 4.32 -
Agnostic: 3 ASDs 21.19 2.13 1.67 5.47 65.95 1.14 2.17 0.28

ct Original SW 11.06 8.42 2.08 4.19 69.25 2.18 2.83 -
Agnostic: 2 ASDs 6.60 6.60 1.78 4.23 78.76 1.81 0.22 -
Agnostic: 3 ASDs 4.29 4.30 1.52 3.16 84.48 1.51 0.49 0.25

it Original SW 20.37 5.41 1.27 6.93 21.56 0.22 44.23 -
Agnostic: 2 ASDs 17.22 6.35 1.14 8.25 29.78 1.21 36.04 -
Agnostic: 3 ASDs 15.31 5.79 1.13 7.75 38.72 1.06 29.25 1.00

rkt Original SW 14.86 17.47 1.63 10.58 19.21 0.86 35.39 -
Agnostic: 2 ASDs 12.28 20.44 2.65 19.09 29.73 0.92 14.88 -
Agnostic: 3 ASDs 8.41 14.66 1.73 13.16 30.17 0.67 18.12 13.08

qt Original SW 4.65 0.55 9.03 3.11 1.20 45.42 36.04 -
Agnostic: 2 ASDs 9.78 1.35 21.83 9.30 3.67 19.58 34.49 -
Agnostic: 3 ASDs 9.72 1.35 19.88 6.50 5.14 18.64 31.56 7.21

zt Original SW 14.86 17.47 1.63 10.58 19.21 0.86 35.39 -
Agnostic: 2 ASDs 12.23 20.36 2.64 19.02 29.61 4.43 11.71 -
Agnostic: 3 ASDs 8.86 15.43 1.82 13.85 31.76 4.14 9.46 14.68

µpt Original SW 11.56 0.29 3.27 57.02 23.87 0.87 3.11 -
Agnostic: 2 ASDs 8.06 0.37 3.38 53.22 18.90 14.59 1.48 -
Agnostic: 3 ASDs 7.99 0.24 2.13 54.80 11.88 15.22 2.61 5.13

kst Original SW 23.43 3.92 1.23 11.37 34.19 0.36 25.50 -
Agnostic: 2 ASDs 21.82 4.90 1.55 16.51 52.66 1.32 1.24 -
Agnostic: 3 ASDs 15.59 3.60 1.11 14.11 58.20 1.21 0.61 5.57

kt Original SW 22.38 8.11 0.50 4.93 31.56 0.04 32.48 -
Agnostic: 2 ASDs 22.16 11.30 0.55 7.27 55.74 0.21 2.77 -
Agnostic: 3 ASDs 14.84 8.05 0.42 6.18 58.26 0.12 2.37 9.75

wt Original SW 33.03 1.03 1.95 38.38 18.61 0.40 6.60 -
Agnostic: 2 ASDs 26.99 1.00 2.63 47.34 20.71 0.39 0.92 -
Agnostic: 3 ASDs 25.35 0.74 1.62 49.34 14.29 0.30 0.44 7.92

Notes. The table provides the contributions (in percent) of the different structural disturbances to the variance of the observable
variables, across different model specifications. The ASD specifications are the ones chosen by our model selection procedure. y
stands for log output; c for log consumption; i for log investment; l for hours; w for log wage rate; rk for rental rate on capital;
q for the log price of capital; z for the utilization rate; µp for the price mark-up; ks for log capital used in production; and k for
log installed capital. Structural disturbances are defined as follows. εa: TFP; εg : government expenditures; εr: monetary policy;
εp:price mark-up; εw: wage mark-up; εb: risk premium; εi: investment; ε̃A: agnostic Euler; ε̃B : agnostic investment-modernization;
and ε̃C : capital-efficiency wage mark-up.

Specifications with and without restrictions on ASDs. Table E.14 also compares1315

structural parameter estimates of concise ASD models chosen by our model selection proce-1316

dures with those that still allow ASDs to enter all equations. The parameter estimates are1317

fairly similar. IRFs for the included regular structural disturbances are also quite similar.1318
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That is not always the case for the IRFs of the agnostic disturbances themselves. The IRFs1319

for some variables do differ between the concise and the fully unrestricted ASD specification.1320

Given the misspecification results of Appendix D, it is not surprising that different empirical1321

specifications lead to different results. Another issue with the fully unrestricted ASD spec-1322

ification is that it estimates a large number of coefficients which complicates generating an1323

accurate posterior with Monte Carlo Markov Chain algorithms. Especially, for the 3-ASD1324

fully unrestricted specification, the Brooks-Gelman statistics did not look particularly good1325

for some of the coefficients associated with the agnostic disturbances. Thus, we prefer the1326

concise ASD specifications.1327

Specifications with two and three ASDs. Tables E.15 and E.16 provide the role of1328

the regular and agnostic disturbances for the fluctuations of a wide range of variables. In1329

addition to the results of the SW specification, it also shows the results for the two-ASD and1330

three-ASD specification chosen by our specific-to-general model selection procedure. It shows1331

that the results are very similar for the two chosen ASD specifications. The same conclusion1332

can be drawn from Figures E.9 and E.10 that plot the IRFs for two agnostic disturbances.1333
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Figure E.9: IRFs of the agnostic Euler disturbance: 2 versus 3 ASDs
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Notes. These panels plot the IRFs of the agnostic disturbance ε̃A,t that we interpret as a general Euler disturbance for
the empirical specifications with two and three ASDs. Both specifications are chosen with the specific-to-general model
selection procedure.
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Figure E.10: IRFs of the agnostic investment-modernization disturbance: 2 versus 3 ASDs
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Notes. These panels plot the IRFs of the agnostic disturbance ε̃B,t that we interpret as an investment-modernization
disturbance for the empirical specifications with two and three ASDs. Both specifications are chosen with the specific-to-
general model selection procedure.
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Additional results for ε̃A,tε̃A,tε̃A,t. Figure E.11 plots the IRFs associated with an innovation1334

in the agnostic Euler disturbance for our 3-ASD benchmark specification and also when the1335

coefficient of this agnostic disturbance in the capital valuation equation is equal to zero. A1336

preference disturbance does not show up in this equation and a bond risk-premium distur-1337

bance does.71 The IRFs are very similar, which confirms our claim that the coefficient in the1338

capital valuation equation is quantitatively not very important. This does not mean that1339

the ASD is a preference disturbance, since the ASD shows up in the investment equation1340

whereas a preference disturbance does not.1341

Figure E.12 plots the same IRFs when the coefficient of the agnostic Euler disturbance in1342

the Taylor rule is set equal to zero. The figure shows that the direct response of the policy1343

rate to a positive shock to this disturbance dampens the expansion and prevents an upsurge1344

of inflation.1345

Figure E.13 plots the same IRFs when we set equal to zero the coefficients of the dis-1346

turbance in the four equations that we ignored in the discussion of the agnostic Euler dis-1347

turbance, namely, the overall budget constraint, the utilization, the price mark-up equation,1348

and the rental rate of capital equation. The figure documents that the role of the agnostic1349

disturbance through these equations is minor since the IRFs are overall quite similar to those1350

of our benchmark specification.1351

Additional results for ε̃C,tε̃C,tε̃C,t. Figure E.14 plots the IRFs for our agnostic capital-efficiency1352

wage mark-up disturbance when the coefficient of this disturbance in the overall budget1353

constraint is set equal to zero. The figure documents that this has a minor impact on IRFs.1354

71Recall that the MRS has been substituted out of the capital valuation equation using the MRS of the
bond Euler equation.

80



Figure E.11: IRFs of the agnostic Euler disturbance with restrictions I

5 10 15 20
0

0.5

1

1.5

%

Euler

Benchmarke(4;A = 0

5 10 15 20
-0.2

0

0.2

0.4

0.6

%

Output

5 10 15 20
0

0.1

0.2

0.3

%

Flexible price output

5 10 15 20
-0.2

0

0.2

0.4

0.6

%

Consumption

5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

%

Investment

5 10 15 20
-0.1

0

0.1

0.2

0.3

%

Hours

5 10 15 20
-0.2

0

0.2

0.4

0.6

%

Capital services

5 10 15 20
-0.2

0

0.2

0.4

0.6

%

Utilization

5 10 15 20
-0.06

-0.04

-0.02

0

%

Inflation

5 10 15 20

time

-1

-0.5

0

0.5

%

Price of capital

5 10 15 20

time

-1

-0.5

0

0.5

%

Marginal cost

5 10 15 20

time

-0.05

0

0.05

0.1

0.15

0.2

%

Policy rate

Notes. These panels plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when the impact
of this IRF through the capital valuation equation is set equal to zero.
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Figure E.12: IRFs of the agnostic Euler disturbance with restrictions II
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Notes. These panels plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when the impact
of this IRF through the Taylor rule is set equal to zero.
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Figure E.13: IRFs of the agnostic Euler disturbance with restrictions III
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Notes. These panels plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when the impact
of this IRF through the overall budget constraint, the utilization, the price mark-up equation, and the rental rate of
capital equation is set equal to zero.

83



Figure E.14: IRFs of the agnostic capital-efficiency wage mark-up disturbance with restrictions
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Notes. These panels plot the IRFs of the agnostic capital-efficiency wage mark-up disturbance for our benchmark speci-
fication and when the impact of this IRF through the overall budget constraint is set equal to zero.
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