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Abstract

This paper shows that the R2 and the standard error have fatal �aws and are

inadequate accuracy tests. Using data from a Krusell-Smith economy, I show that

approximations for the law of motion of aggregate capital, for which the true standard

deviation of aggregate capital is up to 14% (119%) higher than the implied value and

which are thus clearly inaccurate, can have an R2 as high as 0:9999 (0:99). Key in

generating a more powerful test is that predictions of the aggregate law of motion are

not updated with the aggregated simulated individual data.
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1 Introduction1

Models with heterogeneous agents and aggregate risk play an important role in modern2

macroeconomics. Most algorithms follow den Haan (1996), Krusell and Smith (1997,3

1998), and Ríos-Rull (1997) and summarize the cross-sectional distribution with a �nite4

set of moments. Krusell and Smith (1998) use the following iterative scheme. An aggregate5

law of motion speci�es how next period�s cross-sectional moments depend on current6

moments and aggregate productivity shocks. Taking this aggregate law as given, the7

algorithm solves for the individual policy rules. Using the individual policy, a panel data8

set is simulated for a large, but �nite, number of agents. The simulated data are used9

to construct a time series for the cross-sectional moments. These series are then used to10

update the coe¢ cients of the approximating law of motion of the aggregate variables.111

The two accuracy tests considered in the literature to check the �t are the R-square, R2,12

and the standard error of the regression equation, b�u. According to the model, the �t13

should be perfect, that is, the R2 should be equal to 1. The R2 and b�u were originally14

proposed in Krusell and Smith (1998). Although they give most emphasis to these two15

tests, they considered in addition a battery of alternative tests. Papers in the literature,16

however, typically only consider the R2 and b�u. This is unfortunate because� as will be17

shown in this paper� the R2 and b�u are very weak accuracy tests.18

Simple example to document the problems. In Table 1, I report the R2 and some19

properties of di¤erent aggregate laws of motion using a time series of 10; 000 observations.20

The aggregate capital stock, Kt, is constructed from a panel of individual data generated21

by the individual policy rules of Young (2009) for the model of Krusell and Smith (1998).22

The �rst row corresponds to the �tted law of motion of the regression equation:23

ln(Kt) = �1 + �2at + �3 ln(Kt�1) + ut: (1)

This equation has an R2 equal to 0.99999729 and the estimated value for �3 is equal to24

0.96404. In the subsequent speci�cations, I change �3 and simultaneously adjust �1 to1

1den Haan (1996) solves for the individual policy functions using the simulated panel, which avoids

having to specify an explicit law of motion for the aggregate variables.



ensure that the mean error term of the regression equation remains equal to zero. The2

adjustment of �1 also ensures that the implied mean for ln (Kt) remains the same.3

As I lower the value of �3, the value of the R2 obviously goes down. But the changes4

in �3 are such that the R2 remains quite high. In particular, I lower the value of �3 until5

the R2 is equal to either 0:9999, 0:999, or 0:99. Despite the high R2 values, the alternative6

aggregate laws of motion are very di¤erent laws of motion. This is made clear by the7

standard deviation of ln(Kt) that is implied by the three alternative aggregate laws of8

motion. The standard deviation implied by the original regression equation is equal to9

0.0248, which corresponds very closely to the standard deviation of the underlying series.10

But as the value of �3 is changed, the implied standard deviation plummets. For example,11

when �3 is equal to 0:9324788 (0:8640985), then the true value of the standard deviation of12

the aggregate capital stock (the one implied by the individual policy rules) is 43% (119%)13

above the value implied by the approximating aggregate law of motion, even though the14

R2 of the approximating laws of motion is equal to 0:999 (0:99). And when �3 is adjusted15

so that the R2 is equal to 0:9999, then there is still a 14% error for the standard deviation16

of aggregate capital.17

Main problems of existing tests.18

� An accuracy test should test whether a proposed aggregate law of motion corresponds19

to the aggregate law of motion that is implied by the individual policy rules. The R220

and b�u, however, only check the one-period ahead forecast error. This is an extremely21

limited way to check whether the approximating and the true law of motion are22

similar. In fact, the two laws of motion are not really compared with each other,23

because each period one uses as the explanatory variables the actual aggregated24

values of the individual choices, not the values generated by the approximating25

law of motion itself. In other words, each period the true aggregates are used to26

"update" or "correct" the approximating law of motion. Krusell and Smith (1996,27

1998) also consider 25-year forecasts instead of 1-quarter forecasts.2 I will show that1

2Although this test is mentioned in the published version, actual outcomes are only reported in the
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this test overcomes the updating problem of the standard test and a key element2

of the accuracy procedure proposed in this paper is an extension of the idea to use3

multi-step forecasts.4

� Another problematic feature of both the R2 and b�u is that they are averages and,5

thus, may hide large errors. Large errors may be problematic, even if they occur6

infrequently and do not a¤ect the average. Suppose that an approximating law of7

motion does not predict well when the economy is in a severe recession. Even if8

this event is rare, it may still be important for the individual agent�s policy rule,9

for example, for determining the amount of bu¤er-stock savings. Krusell and Smith10

(1996, 1998) seem aware of this possibility and also consider the maximum error.11

Unfortunately, the subsequent literature typically does not.12

� The R2 scales the errors by the variance of the dependent variable. This is not13

necessarily problematic, because scaling may be part of a sensible accuracy test.14

One runs the risk, however, that scaling makes large errors look small. Even if15

scaling is desirable, it depends on the problem how one should scale the residuals.16

The R2 scales errors with the variance of the dependent variable, but it is not clear17

that this is more sensible than scaling with, for example, the mean of the dependent18

variable. This arbitrary aspect of the R2 can be made clear by considering the19

following two regression equations that are estimated using least-squares.20

mt+1 = ��0 + ��1mt�1 + ��2at + ut (2)
21

mt+1 �mt = �
0 + �
1mt�1 + �
2at + ut (3)

These regression equations are identical in every aspect that matters. In particular,22

the estimated equations have identical implications for the prediction of mt+1. The23

R2, however, is not the same, because the variance of mt+1 is not the same as the24

variance of mt+1�mt. In this paper, I will give several examples in which the R2 of25

the second equation is much lower than the R2 of the �rst. But why would the R21

working paper version.
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corresponding to Equation (2) be more appropriate than the R2 of Equation (3)?2

Note that b�u is not a¤ected by this problem. In fact, the value of b�u would be3

identical for both speci�cations.4

The R2 is higher if the errors are smaller relative to the �uctuations in the regressand.5

This means that it is possible that one �nds a higher R2, i.e., an improvement in the6

accuracy measure, if the variance of the underlying shocks increases as is the case in7

Krueger and Kubler (2004).8

These drawbacks of the R2 and b�u will be documented using Monte Carlo analysis.9

In particular, I give several examples in which approximating aggregate laws of motion10

that have an R2 in excess of 0.99 (and even some that have an R2 above 0.9999) di¤er in11

important aspects from the true law of motion.12

Alternative accuracy procedure. I propose an alternative accuracy procedure that13

avoids the drawbacks of the R2 and b�u. The key elements of the alternative procedure14

are the following. First, the test compares a long simulation obtained with the aggregate15

law of motion without updating it using the actual aggregated individual choices. This16

independently generated time series is then compared with the time series obtained by17

aggregating the cross-sectional individual values. Second, the alternative procedure fo-18

cuses on maximum errors. Third, the alternative procedure stresses the importance of19

alternative scaling choices. Besides being too weak, accuracy tests can also be too strong20

in the sense that solutions that are close to the true solution in most important aspects are21

still rejected by the accuracy test. The procedure proposed here, therefore, also consists of22

several exercises to investigate how serious one should take bad outcomes of the accuracy23

tests.24

Does the R2 lead to the wrong answer in practice? The example above showed25

that the R2 can give misleading answers about the accuracy of some alternative aggregate26

laws of motion, but these laws of motion were not actual numerical solutions to the Krusell-27

Smith model. In Section 5, I will give an example of an actual numerical procedure to28

solve the model in Krusell and Smith (1998) that generates an extremely high R2, but1
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is clearly inaccurate in at least one dimension. Thus, the R2 can be misleading even in2

evaluating the accuracy of this relatively simple model. Much more complex models have3

now been solved and evaluated for accuracy using only the R2 and the standard error of4

the regression error.3 Whether these numerical solutions also pass more stringent accuracy5

tests is an important topic for future research.6

2 Accuracy tests7

2.1 Generating observations8

Algorithms that solve models with heterogeneous agents and aggregate uncertainty typ-9

ically obtain estimates of the approximating aggregate law of motion with the following10

two steps. First, a time series of cross-sectional moments, mt, is simulated. Second, a11

regression is used to estimate the coe¢ cients of the approximating law of motion. The12

simulated moments may themselves be subject to error.4 The consequences of these errors13

for the accuracy tests will be discussed in Section 2.6, but for now I simply assume that14

there is a true law of motion that generates a sequence of observations fmt+1g
�T+T
t=1 without15

error according to16

mt+1 = �(mt; at); (4)

where at is an observed exogenous random variable with a law of motion given by17

at = �at�1 + "t, "t � N
�
0; �2

�
: (5)

The �rst �T observations are discarded to eliminate any dependence on initial conditions18

and the remaining observations are used to estimate the coe¢ cients of an approximating1

3Papers that do use more stringent tests to check the accuracy of the aggregate law of motion are, in

addition to Krusell and Smith (1996, 1998), den Haan (1997), Reiter (2002), Algan, Allais, and den Haan

(2008), Reiter (2009), and Silos (2007).
4This is especially a concern, when the simulation is based on a �nite number of agents; Algan, Allais,

and den Haan (2008) show that sampling error can be substantial, even when 100,000 agents are used to

contruct cross-sectional moments. Algan, Allais, and den Haan (2009) discuss several simulation techniques

that avoid cross-sectional sampling variation.
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law of motion, ��(mt; at; ��), which in the experiments is assumed to be linear. Thus,2

mt+1 = ��(mt; at; ��) + ut+1 = ��0 + ��1mt + ��2at + ut+1; (6)

where �� is the vector with the coe¢ cients of ��(�) and ut+1 is a numerical error term. If3

the approximating law of motion is identical to the true law of motion, then ut+1 � 0 for4

every t.5

2.2 Popular tests used in the literature6

The R-square. The R-square, R2, is de�ned as7

R2 = 1�
P �T+T
t= �T+1

bu2t+1P �T+T
t= �T+1

(mt+1 � b�m)2 (7)

with8 but+1 = mt+1 � bmt+1; (8)
9 bmt+1 = ��(mt; at; b��) = b��0 + b��1mt + b��2at; (9)

and10

b�m = �T+TX
t= �T+1

mt+1=T: (10)

The standard error of the regression equation. The standard error of the regression11

equation, b�u, is given by12

b�u =
0@ �T+TX
t= �T+1

bu2t+1=T
1A1=2

: (11)

This measure is sensitive to rescaling the variables or measuring them in di¤erent units.13

Typically, this is not a problem, since the variables are in logs and calibrated to have a14

plausible variance. The error term, ut, then gives a percentage error and the value of b�u15

has a sensible interpretation.16
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2.3 Problems with existing tests17

Improper correcting/updating when evaluating the aggregate law of motion.18

The objective is to evaluate how close the approximate law of motion ��(mt; at; b��) is to19

the true law of motion �(mt; at). The R2 and b�u are weak tests for this comparison; in1

assessing the �t of ��(mt; at; b��) they use as the explanatory variable the values of mt that2

are generated by the true law of motion �(mt; at). That is, observations generated with the3

true law of motion are used to correct and update the predictions of the approximating4

law of motion. If the approximating law of motion is pushing the observations in the5

wrong direction, then it is only allowed to do so for one period; in the next period, the6

true cross-sectional moments are used to put the approximating law of motion back on7

track. Especially if the error made by the approximating law of motion is systematic, then8

this could be a serious problem. This problem indicates that but+1 is not the right error9

term to consider.10

Weak metric. The next problem of standard accuracy tests is that they do not use11

an appropriate metric to evaluate whether the error terms are close to zero. There are12

two problems. First, the R2 and the �bu measure are averages and second, they can hide13

serious errors because of scaling.14

� Averaging. A typical way to report errors in the numerical literature is to re-15

port maximum errors. Especially for this type of accuracy test it is important to16

use stringent standards? The reason is that the aggregate law of motion is only17

one component of the numerical solution of the model, and errors in the di¤erent18

components of the numerical solution can reinforce each other.19

� Scaling. The R2 scales the error term with the variance of the dependent variable.20

This property makes it possible to generate high values for the R2 even though but+121

takes on problematical values. Scaling of errors is not necessarily bad, but it often is22

not clear what the appropriate scaling is. How arbitrary and important the choice23

of scaling is, can be is made clear by considering the regression equation that uses24
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mt+1 �mt instead of mt as the dependent variable. That is,25

mt+1 �mt = ��0 + (��1 � 1)mt + ��2at + ut+1: (12)

I will refer to this speci�cation as the "�rst-di¤erence speci�cation" and to the spec-26

i�cation in Equation (6) as the "level speci�cation". The R2 of the �rst-di¤erence1

speci�cation will be di¤erent from the R2 of the level speci�cation, even though the2

estimated residuals and predictions for mt+1 are identical. Below, I will show that3

the R2 of the �rst-di¤erence speci�cation can be substantially di¤erent from the level4

speci�cation; b�u does not su¤er from this problem.5

Over�tting. The R2 can only increase (and b�u only decrease) if additional explanatory6

variables are added. But if these additional variables do not belong in the law of motion,7

then they only worsen the accuracy of the approximating law of motion.58

When is an R2 too low? The values of the R2 reported in Krusell and Smith (1998)9

are equal to or higher than 0.999985. These are indeed high values. But in Section 4.2,10

I will give an example in which the R2s are above 0.9999 and the approximating law of11

motion is clearly missing some key features of the true law of motion. Part of the problem12

in interpreting the R2 is that it takes the square. Since an accurate model has ut+1 � 013

for every t, it better be the case that we are talking about small errors. By taking the14

square, the R2 pushes the measure closer to 1. Suppose that the R2 is equal to 0.99. One15

might think, that this indicates that the �t is quite good. But an R2 equal to 0.99 implies16

that the Residual Sum of Squares is equal to 1% of the variance of mt+1. That is, the17

standard error, b�u; is equal to 10% of the standard deviation of mt+1. As an empirical �t,18

this may be quite good, but as a numerical error this is very high.19

5Most papers use only a few explanatory variables and a large number of observations in which case

over�tting is not an issue. But this is not true for all papers, For example, Storesletten, Telmer, and Yaron

(2007) use 19 moments as explanatory variables and 20,000 observations. The degrees of freedom are still

high, but how many more moments could one add? The accuracy procedure described below avoids the

problem of over�tting.
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From the literature, it is not clear what values for the R2 are considered to be too low.20

Gomes and Michaelides (2008) are happy that all their R2s are larger than 0.99. Young21

(2005) argues that an R2 equal to 0:975 is "fairly low from a numerical standpoint".22

This makes sense, since an R2 equal to 0:975 corresponds with a standard deviation of23

the regression residual that is equal to 16% of the standard deviation of the dependent24

variable. Nakajima (2007) �nds some values for the R2 that are (just) below 0.975, but1

this does not seem to be a reason for concern. Below, I show that even much higher values2

of the R2 can be consistent with approximating laws of motion that di¤er in key aspects3

with the true law of motion. This di¢ culty in interpreting the R2 and the problem of4

over�tting are also recognized as problems of the R2 in the econometrics literature.65

Evaluating an R2 is especially problematic in AR(1) type processes, which are common6

in macro economic models. If ��2 is set equal to zero in Equation (6), then the R2 is equal7

to ��21 independent of the value of b�u, that is, the R2 provides no information about the8

goodness of �t at all. Also, under the typical case in which 0 < b��1 < 1 and b��2 > 0, then9

the R2 is bounded below by ��21.10

The problem of �guring out what level of inaccuracy is acceptable is a problem that11

a¤ects other inaccuracy tests to some extent as well.7 The R2 enhances the problem,12

because of the scaling with a volatility measure and because it is a measure of the average13

error.14

2.4 New accuracy procedure15

In this section, I propose an alternative procedure that is easy to implement, but avoids16

the drawbacks of the existing tests. It consists of three parts, that will be explained in17

6Verbeek (2000) points out that (i) least-squares by de�nition leads to the highest possible R2, but

that this doesn�t mean that the estimated model also has the best statistical properties and (ii) there is

no absolute benchmark to say that an R2 is �high�or �low�.
7This is not always the case. Santos (2000) relate the Euler equation residual to errors in the policy

function. Reiter (2001) and Santos and Peralta-Alva (2005) construct a relationship between the size of

the errors of the accuracy test and an upperbound on the error of objects economists could be interested

in, such as the obtained utility level or moments. More information is given in Appendix B.
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the following subsections.18

I. Calculate maximum errors using observations generated without updating.19

As pointed out above, a problem of the standard procedure is that observations generated20

using the true law of motion �(mt; at) are used as the explanatory variable to predict21

mt+1. Instead, I propose to do the following.1

1. Obtain a new draw for fatg
�T+T
t=1 . That is, the accuracy test should not be done with2

the sequence used to obtain the estimate b��. If T is very high and the number of3

regressors low, then using a new draw is unlikely to make a di¤erence. Nevertheless,4

there is no excuse to use the old draw just because there are circumstances in which5

it doesn�t matter.6

2. Use the new sequence for at to generate a new time series for mt+1. Typically, this is

done by simulating a panel of individual variables and then taking the cross-sectional

moments each period. In the notation of this paper, this means iterating using

mt+1 = �(mt; at):

3. Let bbmt+1 stand for the corresponding realization according to the approximating law

of motion. It is generated as follows.

bbm1 = m1 and
7 bbmt+1 = ��(bbmt; at; b��) = b��0 + b��1 bbmt + b��2at for t � 1: (13)

Note that bbmt+1 is generated using only the approximate law of motion and never8

relies on the true law of motion � or any values generated with �. That is, bbmt is9

used as the explanatory variable not mt.810

8The following notation is used throughout this paper. A bar above a symbol indicates that it is related

to the approximating law of motion. A hat above a coe¢ cient indicates the least-squares estimate and

a hat above a variable indicates that it is a �tted variable using mt as the explanatory variable, i.e., the

�tted variable according to equation (9). A double hat above a variable indicates that it is a �tted variable

using bbmt as the explanatory variable, i.e., the �tted variable according to equation (13).
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The key di¤erence between this and the standard procedure is that this procedure11

also checks whether errors accumulate. This is important in dynamic numerical problems.12

Today�s decision depends on beliefs about what the world looks like tomorrow, which in13

turn depends on beliefs about what the world looks like the period after. Small errors in14

beliefs can, thus, accumulate just like small deviations between ��(mt; at; b��) and �(mt; at)1

can accumulate.2

I assume that mt corresponds to the log of a variable, so that ut+1 is a percentage3

error. The simulated (percentage) error, bbut+1, is de�ned as94

bbut+1 = ��� bbmt+1 �mt+1

��� : (14)

The maximum simulated percentage error is de�ned as5

bbumax = nbbut�+1 : bbut�+1 � bbut+1 8t o : (15)

This statistic should be the main focus of the accuracy test, although useful information6

may also be given by the average error:7

bbuave = P �T+T
�T+1

bbut+1
T

: (16)

II. Investigate the "fundamental accuracy plot". Plot the time paths of mt+18

and bbmt+1 in one graph. This graph e¤ectively reveals important information. First, it9

indicates when the large errors occur. Second, it indicates whether maximum errors are10

large relative to average errors. Third, it indicates whether errors are persistent and/or11

typically have the same sign. Finally, it is often helpful in determining whether inaccuracies12

found matter or not. Below I will give several examples to illustrate these claims.13

III. Compare properties of true and approximating law of motion. In practice,14

one does not know the functional form of the true law of motion, but one can generate15

observations for the cross-sectional moments by simulating a panel. This means one can16

9 If ut+1 is not expressed as a standard error, then one could use bbut+1 = ��� bbmt+1 �mt+1

��� =mt+1, or if mt

takes on values close to zero, then one could use bbut+1 = ��� bbmt+1 �mt+1

��� = �Ptmt+1=T
�
.
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calculate, for example, impulse response functions for mt+1. These can then be compared17

with the impulse response functions implied by the approximating law of motion ��(�; b��).18

This is another version of the "fundamental accuracy" plot, but now for a particular19

sequence of realizations of the exogenous driving process. The fundamental accuracy20

plot and the impulse response function check the accuracy of the approximating law of1

motion for typical events. One could repeat the procedure for less likely realizations of the2

exogenous driving process. This way one checks the accuracy of the approximating law of3

motion in parts of the state space that are less likely.4

One can also compare the moments of mt+1 and bbmt+1. The moments of bbmt+1 can5

always be calculated from the simulated sequence, but if the approximating law is simple6

enough, then one could also calculate moments directly from the approximating law of7

motion itself.8

Checking for accuracy should be more than simply reporting the results of some ac-9

curacy tests. It is important to "play around" with the solution obtained to make sure10

one understands what its properties are. Krusell and Smith (2006) propose to do this by11

considering the e¤ects of changes in the initial cross-sectional distribution in a two-period12

model. Since the computational complexity is much smaller in this environment, it is13

easier to understand the properties of the model.14

2.5 Discussion15

In this section, I discuss the advantages of the new accuracy procedure and explain why16

it avoids the problems of the standard procedure. A key aspect of the new procedure is17

the comparison of the law of motion one wants to approximate with a time series that is18

generated using only the approximating law of motion. By not using observations of mt19

to update the approximating time path, one obtains a much better comparison of the two20

laws of motion.21

The metric used is the maximum error and the error is a percentage error, that is, it is22

scaled with the level ofmt+1. Note that the maximum error depends on the sample length.23

That is, getting a low maximum error using a long series for bbut+1 is more impressive than24

12



getting the same low maximum error with a shorter sample. The reasons for using the25

maximum error are the following. First, accuracy tests should reveal the weaknesses of26

a numerical solution and should not hide them by averaging. Second, since inaccuracies27

of the di¤erent elements of the algorithm can reinforce each other, it is fundamental to28

impose tough standard on the di¤erent parts. The third reason is that maximum errors1

have been shown to be able to bound errors on implied moments, which is the kind of2

statistic one typically would like the approximating law of motion to predict accurately.103

The question arises what value for bbumax is too high. It would be convenient if there is4

a magic number that speci�es the lowest acceptable number for bbumax. Suppose that the5

maximum error in a sample of 3,000 observation is less than 0:01%. Based on my own6

experience, I would �nd it very surprising, if any property of the model is then inaccurately7

measured, except possibly some exotic ones. Often one does not �nd numbers this small8

for complex problems. If one does not �nd a small value for bbumax, then this does not9

mean that one should automatically discard the approximating law of motion. Many10

properties of the approximating law of motion may still be measured accurately. The11

fundamental accuracy plot provides information about what type of error occurs when.12

The researcher should think through, how these errors could matter. For example, if one13

�nds that the approximating law of motion underpredicts aggregate capital during severe14

recessions, then one could investigate whether the corresponding errors for market prices15

a¤ect individual choices.16

Multi-step accuracy test. The accuracy test proposed has similarities with one of the17

additional tests considered in Krusell and Smith (1996, 1998), namely the one that uses18

100-period ahead instead of 1-period ahead forecast errors. This error is de�ned as follows:19

eut;t+100 = mt+100 � emt;t+100;emt;t+j+1 = b��0 + b��1 emt;t+j + b��2at for 0 � j � 99; andemt;t = mt for t � 1:

(17)

10This is shown in Santos and Peralta-Alva (2005) and discussed in appendix B.
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By extending the forecast horizon from 1 to 100 periods, one does not allow the actual20

values of the aggregated individual observations to update the proposed aggregate law21

of motion during the forecasting interval. Since emt;t = mt, however, one still uses the22

actual aggregated individual choices to initialize each 100-period ahead forecast. The test23

proposed in this paper allows for no updating at all. It uses the approximating aggregate24

law of motion to generate a long time series completely independently of the aggregated1

individual observations (the true law of motion). An important reason to consider multi-2

step forecast errors is that tiny errors can accumulate over time.11 This suggests that it3

is more important that the forecast horizon is driven to a high number, then that the4

exercise is repeated many times for a �xed forecast horizon. In the examples considered in5

this paper, however, the 100-period ahead forecast error considered by Krusell and Smith6

(1996, 1998), is as powerful as the test I propose.127

2.6 What if mt cannot be generated without error?8

Time series for mt are typically obtained from a simulated panel with a �nite number of9

agents. Even with a large number of agents, the cross-sectional moments are subject to10

some sampling variation, which means that the law of large numbers no longer applies.11

That is, there is no law of motion �(mt; at) to describe the simulated mt for which the12

prediction errors are exactly equal to zero. It is then possible that the generated values for13 bbmt+1 are more accurate than the generated values mt+1, because bbmt+1 is not subject to14

cross-sectional sampling variation. That is, one could get high values for bbumax, even if the15

approximating law of motion is accurate. I found the following version of the "fundamental16

accuracy" graph helpful in determining whether inaccuracies in the generation of mt+117

are behind high values of bbumax. Start by choosing some deterministic time paths for18

the exogenous driving process. For example, if the driving process is as in Equation19

11For example, consider xt = 1 + 0:99xt�1 and xt = 1 + 0:991xt�1, both starting at x1 = 1. These

processes will track each other quite closely for a long time even though their limiting values di¤er 11%

from each other.
12Krusell and Smith (1996) also report the correlation between the 100-period ahead forecast and the

realized outcome, but this test has very weak power.
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(5) then one could consider the time path implied by setting "t = 1 for the �rst 2520

periods, setting "t = �1 for the next 25 periods, setting "t = 1 for the next 25 periods21

and so on. Next, plot the corresponding time paths for mt+1 and bbmt+1. If one �nds22

that mt+1 follows the trajectory of bbmt+1 closely, but that it wiggles around bbmt+1, then23

one can be fairly certain that bbmt+1 is actually more accurate then mt+1 and that bbumax24

overestimates the inaccuracies of the approximating law of motion. The reason is that for1

such a deterministic time path the wiggles cannot be due to randomness of "t, but are2

most likely due to sampling error in measuring mt.3

3 Design of two experiments4

3.1 Speci�cation of a true law of motion5

The reason we need accuracy tests in DSGE models is that we do not know the true law6

of motion. Of course, this does not make the evaluation of accuracy tests any easier. To7

evaluate existing and proposed tests, I simply specify a true law of motion �(�), which8

makes the evaluation of the accuracy of the approximating law of motion unambiguous. I9

chose speci�c speci�cations for �(�) to highlight the weaknesses of existing accuracy tests.10

Is this fair? Sure it is. All speci�ed processes are well behaved driving processes and di¤er11

from the approximating law of motion in a sensible way. A good accuracy test should be12

capable of detecting the di¤erences between the laws of motion considered and the simpler13

approximating law of motion. Some readers may believe that the only inaccuracies they14

will encounter are those that can be discovered by existing accuracy tests; readers who15

have so much knowledge about the true solution do not need the help of any accuracy16

test.17

In the �rst experiment, the function �(�) is linear and contains both mt and mt�1,18

whereas the approximating law of motion only contains mt. In the second experiment,19

�(�) is non-linear whereas the approximating law of motion is linear.20
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3.2 Steps of the Monte Carlo experiments21

Phase 1: Estimate the approximating law of motion. Using the true law of motion22

for mt, T + T observations for mt are generated. The last T observations are used to23

estimate the coe¢ cients of the approximating law of motion. I set �T = 500 and T takes24

on the values 3; 000 and 50; 000. There are 100 repetitions.1

Phase 2: Traditional accuracy tests. In this step, I calculate the R2 and b�u statistics.2

Phase 3: New accuracy procedure. In this step, I perform the three steps of the3

new accuracy procedure.4

� Draw a new realization for at and recalculate a time series for mt+1 using the true5

law of motion. Next, calculate bbmt, without using any realization of mt+1, except for6

m1. Finally, calculate bbumax and bbuave.7

� Draw the fundamental accuracy plot.8

� Compare properties of the true and the approximating law of motion.9

Monte Carlo studies tend to make tedious reading. To reduce the burden on the reader,10

I report only the key results in the main text and the reader can �nd detailed results and11

additional exercises in Appendix A.12

4 Results for the two experiments13

4.1 Experiment 1: Missing second-order lag14

4.1.1 Experiment 1: Speci�cation15

In the �rst Monte Carlo experiment, the true law of motion is given by16

mt+1 = �0 + �1mt + �2at + �3mt�1; (18)

where at is an observed exogenous random variable with a law of motion given by Equa-17

tion (5). I consider two sets of parameter values and they are reported in Table 2. Both18
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parameter sets imply that the impulse response function is hump-shaped. For the para-19

meters of Experiment 1.1, the hump of the impulse response function is small, but for the20

parameters of Experiment 1.2, it is more substantial.21

As mentioned above, it is not clear whether the errors from the accuracy tests should22

be scaled and� if they should be scaled� whether they should be scaled by the standard23

deviation of mt, the non-stochastic mean of mt, or something else. The answer depends1

on the actual context. I assume that mt stands for the log of a variable. Unscaled errors,2

thus, correspond to percentage errors. Using unscaled errors means that the magnitudes of3

the errors increase with the variance of the driving process. Consequently, a sensible value4

for the variance of the driving process must be chosen. In each experiment, I choose the5

standard deviation of "t such that the standard deviation ofmt is equal to 0.025 (i.e., 2.5%)6

which is roughly equal to the standard deviation of log aggregate capital in the model with7

heterogeneous agents solved in Algan, Allais, and den Haan (2008). Occasionally, I report8

errors as a fraction of the standard deviation of mt; but since this standard deviation is9

less than 1, this means that scaled errors are substantially larger.10

4.1.2 Experiment 1: Traditional accuracy test outcomes11

Table 3 summarizes the results of the traditional accuracy tests across Monte Carlo repli-12

cations. The sample size used makes little di¤erence. Thus, without loss of generality, I13

focus on the accuracy tests obtained with T = 3; 000. First, consider Experiment 1.1. The14

R2 is very high across Monte Carlo replications for the level regression. In particular, the15

minimum R2 is equal to 0:9995. The maximum (average) value for b�u is equal to 0:049%16

(0:047%). A standard error of 0.049% corresponds to 1.96% of the standard deviation of17

mt, which does not sound impressive at all, but is consistent with the high R2 value.1318

For the �rst-di¤erence regressions, the R2s are a bit lower, but the minimum value across19

Monte Carlo replications is still above 0.99. For Experiment 1.2, the R2 for the level equa-20

tions are fairly high. In particular, the minimum (average) R2 is equal to 0.9940 (0.9952).21

13An R2 equal to 0.9995 corresponds with a standard deviation of the residual equal to 2.2% of the

sample standard deviation of mt.
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Interestingly, the R2 of the �rst-di¤erence equation is substantially lower. In particular,22

the minimum (average) value is equal to 0.8413 (0.8408). Also, the outcomes for b�u are23

not as low as for Experiment 1.1. The maximum (average) value of b�u across Monte Carlo1

replications is now equal to 0.174% (0.168%).2

4.1.3 Experiment 1: New accuracy procedure3

New accuracy procedure for Experiment 1.1: I - test outcomes. Table 4 reports4

the results for the new accuracy tests. The sample size used a¤ects the outcomes of the5

test statistics somewhat, but both sample sizes give a similar picture about accuracy.146

Therefore, I only discuss the case with T = 3; 000 in the text. For Experiment 1.1, the7

average (median) across Monte Carlo replications of the maximum residual, bbumax, is equal8

to 0.83% (0.82%). These numbers clearly indicate that the �t of the approximating law9

of motion is not as good as the high R2s suggest. These are the kind of numbers, that10

may lead a researcher to still accept the solution, but only after a more careful analysis.11

The average (median) across Monte Carlo replications of bbuave is 0.21% (0.16%). Also not12

a spectacular outcome.13

For Experiment 1.2, the new accuracy tests make very clear, that the approximating14

law of motion is not accurate. For example, the maximum error in the simulated series is on15

average 3.34%, which exceeds the standard deviation of mt by far and even the minimum16

across Monte Carlo replications is equal to 2.48%. Such high values clearly suggests that17

the approximating law of motion di¤ers in a substantial way from the true law of motion,18

in sharp contrast to what is suggested by the high values of the R2 statistic. Krusell and19

Smith (1996) consider two statistics to evaluate 100-period ahead forecast errors. The �rst20

is the correlation between the forecast, emt;t+100, and the realization, mt+100. The second21

14 In this Monte Carlo experiment, I set the length of the sample used to estimate the coe¢ cients of the

approximating law of motion equal to the length of the sample to do the accuracy test, but these could

in principle be di¤erent. Given a value for b��, a longer sample in the accuracy test can only lead to an
increase in bbumax. By also using a longer sample in the regression analysis, however, one may obtain a
more precise aggregate law of motion and obtain a lower value for bbumax. Thus, there is not necessarily a
monotone relationship and there is none found in the results.
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is the maximum forecast errors, eumax100 = maxft�T�100g eut;t+100. The results are reported22

in Table 5. The R2s for the comparison of emt;t+100 and mt+100 are low for Experiment23

1.2, but the minimum R2 across Monte Carlo replications is above 0.9929 for Experiment24

1.1. The average forecast error is also not very powerful in detecting inaccuracies. The1

statistic eumax100 , however, clearly indicates that the solutions are not accurate and that the2

high R2 values give a very misleading picture about the accuracy of the approximations.3

In fact, the behavior of eumax100 is very similar to the behavior of bbumax.4

New accuracy procedure for Experiment 1: II - fundamental accuracy plot.5

Figures 1 and 2 give a graphical presentation of the traditional and the new accuracy6

tests, respectively. To be precise, Figure 1 plots the outcome of the approximating law of7

motion calculated with8 bmt+1 = b��0 + b��1mt + b��2at (19)

together with the true realizations formt. Figure 2 plots the outcome of the approximating9

law of motion calculated with10

bbmt+1 = b��0 + b��1 bbmt + b��2at; (20)

also together with the true realizations for mt. The initial value, m1, is the same. Panel A11

of each �gure reports the results for Experiment 1.1 and Panel B the results for Experiment12

1.2. For both experiments, I plot the �rst 250 observations (after disregarding the �rst13

500) in the �rst Monte-Carlo replication. In practice, one would of course want to take a14

look at the whole sequence, but for this experiment it does not matter very much which15

part of the sample one looks at and the graphs are more clear if a shorter sample is used.16

For Experiment 1.1, the R2 in the �rst Monte Carlo replication is equal to 0.999617

and the true and �tted values are almost always indistinguishable to the naked eye. For18

Experiment 1.2, the R2 is equal to 0.9953 and although tiny errors are occasionally visible,19

the �t seems excellent.20

Figure 2 makes clear that this is not the case when the observations of the lagged21

explanatory variable are generated by the approximating law of motion. Panel A doc-22

uments that for Experiment 1.1, the di¤erences are typically still small, but they occur23
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much more frequently than in �gure 1. The maximum error in this subsample of 25024

observations is 0.47%, whereas the maximum value bbumax across Monte Carlo replications25

is equal to 1.18%. So by taking simply an arbitrary subsample, I do not fully reveal the1

existing di¤erences between mt+1 and bbmt+1.2

Panel B of �gure 2 shows the comparison of the separately generated series for Ex-3

periment 1.2. Whereas the results for Experiment 1.1 started to show some cracks, but4

seemed (at least in this subsample) reasonable, the results for Experiment 1.2 are clearly5

bad. There are long periods where the independently �tted values are quite di¤erent from6

the true values, indicating that the approximating law of motion is not accurate. Nev-7

ertheless, the R2 for Experiment 1.2 in this Monte Carlo replication is equal 0.9953, not8

that much lower than the R2 of Experiment 1.1.159

The question arises whether the new and more powerful accuracy test picks up some-10

thing important. This is of course di¢ cult to answer without knowing what the researcher11

is interested in. Consider Experiment 1. Figure 2.A makes clear that the approximating12

linear law is not as accurate as the high R2 suggests, but the path calculated with the ap-13

proximating law of motion does roughly follow the movements in the time path generated14

with the true law of motion. To see whether errors matter or not, one should investigate15

the properties of the true and approximating law more closely, which is the last step of16

the new accuracy procedure.17

New accuracy procedure for Experiment 1: III - evaluation. How di¤erent are18

the true and the approximating law of motion? To answer this question, I look at a set19

of moments and impulse response functions. The di¤erences in the moments and detailed20

summary statistics of the Monte Carlo experiment are given in Appendix A. Here I simply21

compare the true impulse response function with the impulse response function implied22

by the approximating law of motion of the �rst Monte Carlo replication. This summarizes23

in a concise manner what is going on.24

15 If one� only out of curiousity of course� would use the R2 to evaluate the �t between mt+1 and bbmt+1,

then one would get for the data in this �rst Monte Carlo replication an R2 of 0.84, substantially below

0.9953.
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The two impulse response functions are reported in Figure 3. Panel A reports the25

results for Experiment 1.1 and Panel B for Experiment 1.2. The values of the R2 are26

equal to 0.9996 and 0.9953 for Experiment 1.1 and 1.2, respectively. The graphs of the1

impulse response functions make clear, that the two laws are very di¤erent and that the2

R2 clearly is an inadequate accuracy test.3

4.2 Experiment 2: Missing non-linearity4

4.2.1 Experiment 2: Speci�cation5

In the second Monte Carlo experiment, the true law of motion is given by6

mt+1 = �0 + �1;tmt + �2at; (21)

�1;t =

�
�1 +

�3
�4 exp(��5mt)

�
: (22)

The approximating law of motion is again equal to a linear process and, thus, misses7

that the true process has a time-varying autoregressive coe¢ cient. The values of the8

coe¢ cients are chosen to be all positive so that shocks are more persistent when mt takes9

on higher values. Two di¤erent sets of parameter values are considered. In the �rst10

set, the exogenous driving process, at, is serially correlated and �1 = 0:95. In the second11

parameter set, at is not serially correlated. All other parameter values are identical, except12

that the value of �" is adjusted to ensure that the standard deviation of mt is the same13

in both cases and� as in the �rst experiment� equal to 0.025. With the �rst parameter14

set, the autoregressive coe¢ cient, �1;t, varies between 0.90 and 0.95 (in a sample of 50,00015

observations), whereas with the second parameter set it varies between 0.85 and 0.95.16

Although the variation is less in the �rst parameter set, the time-varying aspect of the17

autoregressive coe¢ cient turns out to be more important for the �rst parameter set. The18

reason is that the persistence in at creates more persistence in �1;t as well. The parameter19

values are reported in Table 2.20
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4.2.2 Experiment 2: Traditional accuracy test outcomes21

Results for the traditional accuracy tests are reported in Table 3. The R2 for the level22

equations are very high for both sets of parameter values. For T = 3; 000, the minimum R223

across Monte Carlo replications is above 0.9997 for both parameter sets. The R2 for the24

�rst-di¤erence regression gives di¤erent results. For Experiment 2.2, the R2s are still high,1

with a minimum of 0.9975. For Experiment 2.1, however, the minimum is equal to 0.93852

and the average is equal to 0.977. Recall that the level and the �rst-di¤erence regression3

are identical in all things that matter, including its predictions for mt+1. The average4

standard error of the regression equation is equal to 0.021% and 0.03% for experiments5

2.1 and 2.2 respectively. Low values that are consistent with the high R2 values.6

4.2.3 Experiment 2: New accuracy procedure7

New accuracy procedure for Experiment 2: I - test outcomes. For T = 3; 000,8

the average (median) value across Monte Carlo replications of bbumax is equal to 1.86%9

(1.72%) and 1.83% (1.73%) for Experiment 2.1 and 2.2 respectively. These numbers are10

clearly not small and relative to the standard deviation of mt, which is equal to 2.5%, they11

are huge.12

Comparing the results for Experiment 2 with those of Experiment 1, two di¤erences13

emerge. First, Experiment 2 makes much more clear than Experiment 1 that bbumax is a14

much more powerful statistic than bbuave. Second, Experiment 2 makes clear the importance15

of using a long enough sample and/or do the accuracy test several times. That is, the16

minimum values of bbumax make clear that the outcome of the accuracy test is reasonable17

in some Monte Carlo replications. In Experiment 2.1, the minimum value of bbumax across18

Monte Carlo replications is equal to 0.46% when T = 3; 000. This is considerably below19

the median value of 1.72%. The minimum value is equal to 2.01% when T = 50; 000.20

Table 5 reports the results for the statistics related to the 100-quarter ahead forecasts.21

Despite the di¤erences in constructing the accuracy test, the results are again very similar22

to the results using bbumax as long as one considers maximum forecast errors. The correlation23

coe¢ cient for the 100-period ahead forecast and its realization is on average above 0.99524
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and, thus, clearly misses the inaccuracies of the approximating law of motion.25

New accuracy procedure for Experiment 2: II - fundamental accuracy plot.26

Figure 4 plots the time series for mt+1 together with the series implied by the approx-27

imating law of motion when the approximating law is not updated by using the true1

observations for mt as the explanatory variable. Panel A reports the results for Experi-2

ment 2.1 and Panel B for Experiment 2.2. The �rst 250 observations of the �rst Monte3

Carlo replication are used. The R2 in this �rst Monte Carlo replication is equal to 0.99994

for Experiment 2.1 and 0.9998 for Experiment 2.2.5

The results di¤er quite a bit across the two experiments. In Experiment 2.1, there is a6

systematic di¤erence between the series generated by the true and the approximating law7

of motion. In Experiment 2.2, the series generated by the approximating law of motion8

follow the true series quite closely although there are some visible gaps. The �gures seem9

to suggest that the results are much more accurate for Experiment 2.2 than for Experiment10

2.1, whereas the new accuracy statistics indicate similar inaccuracies. Of course, the �gure11

only plots an arbitrary part of an arbitrary Monte Carlo replication. Figure 5 plots for12

Experiment 2.2 the set of realizations for mt+1, together with the corresponding values13

for bbmt+1, for the Monte Carlo sample in which the largest value for this maximum error is14

obtained. The approximating law of motion of Experiment 2.2 can indeed do quite poorly15

for quite a long time period. Interestingly, before the true and the approximating law of16

motion diverge they track each other quite closely and the same is true afterwards. The17

approximating and the true law start to diverge when mt+1 takes on extremely low values.18

In particular, during severe downturns the approximating law of motion predicts much19

lower aggregate capital stocks.20

New accuracy procedure for Experiment 2: III - evaluation. Figure 6 plots the21

impulse response functions using three di¤erent sets of initial conditions: the steady state22

value of mt, two standard deviations above, and two standard deviations below mt. The23

approximating law of motion is linear and initial conditions, thus, do not matter. Panel24

A reports the results for Experiment 2.1 and panel B reports the results for Experiment25
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2.2. The results for the approximating law of motion are those from the �rst Monte Carlo26

experiment.27

For Experiment 2.2, the approximating law of motion does a good job in capturing the28

short-term response. It does a poor job, however, in capturing the speed at which the series29

revert to its pre-shock value; it overestimates the speed when the shock occurs at higher1

values and underestimates it at lower values. For Experiment 2.1, the approximating law2

of motion also does a good job in capturing the short-term responses, but after roughly3

�ve periods the approximating law of motion can generate quite di¤erent responses. The4

response generated by the approximating law of motion corresponds quite closely to the5

average response of the true law of motion, but this response is not the response observed6

when the shock occurs when the system is at the steady state.7

5 Misleading answers from the R2 test in actual application8

In the last section, the speci�cations of the true laws of motion were chosen to highlight the9

shortcomings of the R2 and b�u as accuracy measures. Although the processes chosen were10

regular processes, they did not come out of an actual economic model with heterogeneous11

agents. In the introduction, I did use data generated by a numerical solution to the12

individual policy rules from an actual economic model, but there was no feedback between13

aggregate and individual policy rules.14

In this section, I present an example where relying on the R2 in solving the model of15

Krusell and Smith (1998) leads to an inaccurate solution for a particular algorithm.16 In16

particular, the R2s of the approximating law of motion are above 0.99997. Nevertheless,17

there are nontrivial errors in the generated values of �rst-order moments.17 The proposed18

numerical solution does fail, however, the new accuracy tests proposed in this paper.19

16See den Haan, Judd, and Juillard (2009) for an exact description of the model.
17The inaccuracy seems to be present only in the mean values. There is no reason to believe, however,

that inaccuracies will always only show up in �rst-order moments.
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Algorithm and results. The example is from den Haan and Rendahl (2009), who20

show that the aggregate law of motion can be obtained by explicit aggregation of the21

individual policy rule. For explicit aggregation to work the individual policy rule has to22

be linear in the coe¢ cients of the monomials of the individual state variables. If this is23

not the case, then an auxiliary individual policy rule has to be used that does have this24

form. The auxiliary rule is only used to obtain the aggregate law of motion and not to1

describe individual behavior. Because of the borrowing constraint, the individual policy2

rule of the unemployed agent in the Krusell-Smith economy has a kink and it would be3

costly to represent it as a function with the required functional form. In the �rst algorithm4

considered in den Haan and Rendahl (2009), auxiliary policy rules for the unemployed and5

employed agent are speci�ed that are linear in the individual capital levels. From these6

den Haan and Rendahl (2009) derive an aggregate law of motion for the capital stock of7

the unemployed (Ku) and the employed (Ke) agents. The R2s are equal to 0.999973 and8

0.999997 for Ku and Ke respectively. Nevertheless, the solution is clearly inaccurate; the9

values of bbumax �bbuave�are 1.68% (1.07%) and 1.45% (0.98%) for the law of motion of Ku10

and Ke respectively. The problem is that, although the one-period ahead forecasts are11

small, the bias is systematic and accumulates over time.12

den Haan and Rendahl (2009) also presents a numerical solution that corrects for the13

bias and attains much lower values for bbumax. The accurate and inaccurate solution generate14

very similar second-order properties, but quite di¤erent �rst-order statistics. Without the15

bias correction, the mean capital stock implied by the approximating law of motion for16

aggregate capital is only 0.02% above the steady state capital stock, whereas with the bias17

correction, the implied mean capital stock is 0.28% above the steady state value. That18

is, the two numerical solutions give di¤erent answers to the question how uncertainty and19

imperfect risk sharing a¤ect capital accumulation.20

Moreover, these di¤erent aggregate laws of motion have a substantial e¤ect on the21

individual policy rules. When the correction is imposed, then the mean capital stock22

implied by the individual policy function is 0.30% above the steady state value, that is,23

the number generated with the individual policy function is virtually the same as the24
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one generated with the aggregate law of motion. When the correction is not imposed,25

however, then the mean capital stock implied by the simulated individual choices is 1%26

above the steady state value.18 Thus, although the aggregate law of motion obtained27

with the algorithm that does not apply the correction procedure has a very high R2, the1

numerical solution gives very misleading answers regarding the question how the presence2

of idiosyncratic and aggregate uncertainty a¤ects the mean capital stock in this model3

with incomplete markets.4

6 Conclusion5

Starting in the early nineties, numerous new numerical procedures have been developed to6

solve DSGE models. In those days, accuracy checks played a crucial role.19 Even though7

models have become much more complex, researchers have become much less concerned8

about the accuracy of their numerical solutions. Krusell and Smith (1996, 1998) deserve9

credit for using a battery of accuracy tests when they used a new algorithm to solve a10

problem that had not been solved before. Unfortunately, this paper has documented that11

the two accuracy measures that were given most attention by Krusell and Smith (1996,12

1998)� and that are now typically the only accuracy measures considered� are very weak13

tests. Now that it has been documented that high (low) values for the R2 (b�u) are pretty14

much meaningless, one should seriously question the accuracy of results presented when15

researchers only provide the values for the R2 and b�u.16

This paper has also proposed a new accuracy procedure. The �rst part of the procedure17

consists of more powerful tests. More important than producing a particular number for an18

accuracy test, however, is an evaluation of the properties of the approximating aggregate19

law of motion and the aggregate law of motion implied by the individual policy rules.20

18The di¤erence in the mean implied by the aggregate and the individual laws of motion is, thus, roughly

0.98%, which is consistent with the values reported for bbuave above.
19For example, accuracy tests played an important role in the comparison of numerical methods by

Taylor and Uhlig (1991).

26



A Detailed results of the Monte Carlo Experiments21

A.1 Experiment 122

Table 6 reports the di¤erences between moments generated by the true and the approxi-23

mating law of motion. The table consists of two parts. In the top panel, simulated series24

of mt and bbmt are used to directly construct the moments. In the bottom panel, the uncon-25

ditional moments implied by the true law of motion are compared with the unconditional1

moments implied by the estimated approximating law of motion.2

One important observation is that for this exercise the sample size does matter. That3

is, even at a relatively large sample like 3,000 observations, the sampling variation has4

clearly not yet averaged out. This highlights that sampling variation disappears at a slow5

rate and using simulation procedures in numerical procedures may require the use of very6

large samples.7

From a numerical point of view, some of the deviations are disturbing. For T = 3; 0008

the di¤erence between the sample mean of the true mt and the sample mean generated by9

the approximating law of motion is� averaged across Monte Carlo replications� equal to10

0.17% for Experiment 1.2. This is not a good result, especially not if one realizes that this11

is 6.8% of the standard deviation of mt. The maximum across Monte Carlo replications is12

equal to 0.71%, which is equal to 28.4% of the standard deviation of mt. This maximum13

error for the mean is only reduced to 0.13% (or 5.2% of the standard deviation) when14

T is equal to 50; 000. Whether such di¤erences in the mean are important depends on15

the context and how the approximating law of motion is used. A systematic error in the16

aggregate law of motion may lead to a systematic error in the individual policy rules,17

which in turn could increase the error in the aggregate law of motion.18

Next, I check the di¤erence between the true and the approximating law of motion19

for calculating impulse response functions. Table 7 reports the di¤erence between the jth-20

period impulse response according to the true and the approximating law of motion scaled21

by the true �rst-period response. The �rst two rows indicate that the approximating law22

of motion captures the �rst-period response quite well and that from an economic point23

27



of view the di¤erences are likely not to be important. The subsequent rows make clear24

that the approximating law of motion does a poor job in getting the shape of the impulse25

response function right. This should not be surprising, given that the hump that is present26

in the true impulse response function is impossible to capture with the approximating law27

of motion, which is a �rst-order autoregressive process. The point being made is, of1

course, not that some second-order processes cannot be accurately described with a �rst-2

order process. That is well known. The point is that the R2 does not indicate that the3

�rst-order approximation is inaccurate.4

A.2 Experiment 25

Table 8 documents the di¤erences between the true and the approximating law of motion6

for the corresponding moments. Results do again vary by sample size, but the assessment7

about the accuracy of the approximating law of motion is the same for every sample size.8

Therefore, only the results for T = 3; 000 are reported. The biggest di¤erences are found9

for the standard deviation. Di¤erences implied by the true and the approximating law of10

motion can be as high as 12.8% (6.97%) for Experiment 2.1 (2.2).11

Table 9 reports summary statistics for the di¤erences in the impulse response functions.12

The errors are much larger for Experiment 2.1. This is consistent with the "fundamental13

accuracy plot". One striking observation is that even for long-term responses there are14

large di¤erences between the true and the approximating law of motion. In particular, for15

Experiment 2.1 the average (maximum) error for the 50-period response (as a fraction of16

the �rst-period response) is equal to 40.7% (85.2%).17

The statistics in Table 9 are based on shocks that occur at the steady state. The18

true process is non-linear and the true impulses, thus, depend on the values of the state19

variables when the shock occurs. In particular, they are not that di¤erent if shocks occur20

at higher values, but they are quite di¤erent at lower values. As documented by the21

example in the main text, the di¤erences between the true and the approximating law of22

motion are much larger when shocks occur at low values of mt.23
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B Relation to Santos and Peralta-Alva (2005)24

Some motivation for using the maximum prediction error in the accuracy test is found in1

Santos and Peralta-Alva (2005). Let st be equal to the vector [mt; at] and suppose that the2

true law of motion can be written as mt+1 = �(st) with st 2 S. Santos and Peralta-Alva3

(2005) show that one can use bbumax to construct an error bound bound on moments of st4

as implied by the approximating law of motion ��.20 Assume that there exist a constant 
5

such that6

Ejj�(s; ")� �(s0; ")jj � 
jjs� s0jj for all pairs s; s0, (23)

where7

�(m;a; ") =

24 �(m;a)
�a+ "

35 : (24)

De�ne d as follows8

d = max
s;s0"S

jjs� s0jj: (25)

Now consider the moments, E[f(s)], where f(s) is a Lipschitz function with constant L.219

Santos and Peralta-Alva (2005) show that one can bound the di¤erence between the true10

moment, E[f(mt; at)] ; and the expected value of the sample mean of f(bbmt; at) using the11

following inequality12 �����E [f(mt; at)]� E
"PT

t= �T f(
bbmt; at)

T � �T

#����� � Ld
T�
�T

1� 
 +
Lbbumax
1� 
 : (26)

The �rst term on the right-hand side bounds the di¤erence between the sample mean of13

f(mt; at) and E[f(mt; at)]. This term can be made arbitrarily small by letting T be large14

enough. The second term bounds the di¤erence between the sample mean of f(mt; at)15

and the sample mean of f(bbmt; at). That is, it bounds the di¤erence between the moment16

implied by the true law of motion and the moment implied by the approximating law of17

motion.18

20The analysis allows for the possibility that � depends on an additional explanatory variable such as

mt�1. One would have to extend the state space with the additional lag and �� would restrict the coe¢ cient

on the additional term equal to zero.
21A real valued function f on S is called Lipschitz with constant L if jf(s)� f(s0)j � Ljjs � s0jj for all

pairs s and s0 in S.
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The formula of Santos and Peralta-Alva (2005) makes clear how bbumax is a useful in-19

gredient to bound moments of mt. It also makes clear that a smaller value for bbumax is20

needed when 
 is closer to one. The higher the value of 
, the lower the value of bbumax21

one needs to bound the error on the moment E[f(mt; at)]. Since aggregate series are often1

persistent, the value of 
 could be quite high and to keep the upper bound low, one would2

need a very low value of bbumax. For example, suppose that one is interested in the mean so3

that f(mt) = mt and L = 1. A value of bbumax = 0:01% and 
 = 0:99, then imply a bound4

on the mean with a much larger value than bbumax namely 1% (assuming that T is large5

enough to drive the �rst term to zero).6

To use these bounds one needs an estimate for 
 and L. To obtain an estimate for 
 one7

can calculate the eigen values of the approximating law of motion and the law of motion8

for at and use the maximum. The value of L is equal to 1 when considering the mean. For9

other moments, one can obtain an estimate for L by calculating the maximum derivative of10

f(st) across di¤erent values of st in S. Obviously, there are many unconditional moments11

one could look at. Besides standard unconditional moments of mt, one can also consider12

impulse response functions.13

This seems like a very useful framework to determine what reasonable values for bbumax14

are. One �rst determines what the key moments of the true law of motion are, that one15

wants to capture. Next, one works backwards to determine what the value of bbumax should16

be. For this to work in practice, one needs the bounds to be tight. Unfortunately, I found17

the bounds not to be tight in the examples used.18

Consider Experiment 1.1. For the true driving process, the largest eigenvalue is equal19

to 0.9777.22 The average value of bbumax is equal to 0.83%. Using 
 = 0:9777 implies an20

upper bound on the error of the implied mean of 37.2%.23 Table 6 documents, however,21

that actual errors on the mean are way below this upper bound.22

22 In practice, one would have to use the approximating law of motion to obtain an estimate of the

eigenvalue. Estimates across Monte Carlo replications vary from 0.9813 to 0.9823, so except for a small

upward bias, the approximating law of motion is capable of capturing the dominant eigenvalue reasonably

well.
23 I ignore the �rst term in Equation (26), which captures sampling variation.
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Table 1: Meaninglessness of the R2

implied properties
equation R2 b�u mean stand. dev.
�3 = 0:96404 (�tted regression) 0:99999729 4:1� 10�5 3:6723 0:0248
�3 = 0:954187 0:99990000 2:5� 10�4 3:6723 0:0217
�3 = 0:9324788 0:99900000 7:9� 10�4 3:6723 0:0174
�3 = 0:8640985 0:99000000 2:5� 10�3 3:6723 0:0113
Notes: The �rst row corresponds to the �tted regression equation. The subsequent rows
are based on aggregate laws of motion in which the value of �3 is changed until the indicated level
of the R2 is obtained; �1 is adjusted to keep the �tted mean capital stock equal.
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Table 2: Parameter Values

Parameter Experiment 1 Experiment 2
1:1 1:2 2:1 2:2

�0 0 0 0
�1 1:08 1:38 0:65 0:65
�2 1 1 1 1
�3 �0:1 �0:4 0:3 0:3
�4 - - 0:01 0:01
�5 - - 50 50
�0 0 0 0 0
�1 0 0 0:95 0
� 0:00472 0:15436 6:3891 � 10�4 8:616 � 10�3

Notes: All parameter sets imply a standard deviation for the underlying series equal to 2.5%.
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Table 3: Traditional Accuracy Tests

Experiment 1.1 Experiment 1.2
T 3; 000 50; 000 3; 000 50; 000
average R2 (level) 0:9996 0:9996 0:9952 0:9955
minimum R2 (level) 0:9995 0:9996 0:9940 0:9951
average R2 (�) 0:9901 0:9901 0:8413 0:8411
minimum R2 (�) 0:9901 0:9901 0:8408 0:8410
average b�u 0:047% 0:047% 0:168% 0:168%
maximum b�u 0:049% 0:048% 0:174% 0:170%

Experiment 2.1 Experiment 2.2
T 3; 000 50; 000 3; 000 50; 000
average R2 (level) 0:99993 0:99993 0:99986 0:99986
minimum R2 (level) 0:99983 0:99991 0:99971 0:99982
average R2 (�) 0:97695 0:97559 0:99879 0:99880
minimum R2 (�) 0:93847 0:96828 0:99750 0:99847
average b�u 0:021% 0:022% 0:030% 0:030%
maximum b�u 0:034% 0:025% 0:044% 0:034%

Notes: The standard deviation of the true series is equal to 2.5%. R2 for the level (�) regression
is based on a regression with mt+1 (mt+1 �mt) as the dependent variable.
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Table 4: New Accuracy Tests

Experiment 1.1 Experiment 1.2
T 3; 000 50; 000 3; 000 50; 000

average bbumax 0:83% 1:03% 3:34% 4:10%

median bbumax 0:82% 1:01% 3:28% 4:04%

minimum bbumax 0:57% 0:85% 2:48% 3:40%

average bbuave 0:21% 0:20% 0:83% 0:80%

minimum bbuave 0:16% 0:19% 0:67% 0:76%

Experiment 2.1 Experiment 2.2
T 3; 000 50; 000 3; 000 50; 000

average bbumax 1:86% 3:20% 1:83% 3:07%

median bbumax 1:72% 3:21% 1:73% 2:95%

minimum bbumax 0:46% 2:01% 0:59% 2:16%

average bbuave 0:21% 0:20% 0:17% 0:17%

minimum bbuave 0:11% 0:18% 0:12% 0:15%

Notes: bbu stands for the di¤erence between m and bbm; the latter uses lagged values ofbbm and not lagged values of m as values for explanatory variable. The superscript indicates
whether the maximum or the average is taken. The standard deviation of the true series is equal
to 2.5%.
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Table 5: Multi-Step Forecasts & Errors

Experiment 1.1 Experiment 1.2
T 3; 000 50; 000 3; 000 50; 000
average bu�;max 0:81% 1:01% 3:35% 4:13%
median bu�;max 0:81% 0:98% 3:33% 4:04%
minimum bu�;max 0:65% 0:88% 2:76% 3:63%
average bu �;ave 0:17% 0:20% 0:70% 0:81%
minimum bu�;ave 0:16% 0:19% 0:63% 0:79%
average correlation(mt+� ; bmt+�;t) 0:9948 0:9950 0:9101 0:9128
minimum correlation(mt+� ; bmt+�;t) 0:9929 0:9946 0:8867 0:9071

Experiment 2.1 Experiment 2.2
T 3; 000 50; 000 3; 000 50; 000

average bbumax 1:79% 3:15% 1:79% 3:15%

median bbumax 1:65% 2:95% 1:65% 2:95%

minimum bbumax 0:62% 2:14% 0:62% 2:15%

average bbuave 0:14% 0:17% 0:14% 0:17%

minimum bbuave 0:08% 0:15% 0:08% 0:15%
average correlation(mt+� ; bmt+�;t) 0:9953 0:9953 0:9953 0:9953
minimum correlation(mt+� ; bmt+�;t) 0:9832 0:9942 0:9832 0:9942

Notes: This table compares � -period ahead forecasts, bmt+�;t, with the realization, mt+� ,
and reports properties of the forecast error. � is equal to 100. The standard deviation of the true
series is equal to 2.5%.
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Table 6: Moments - Experiment 1

1:1 1:2
T 3; 000 50; 000 3; 000 50; 000

average error for bb�m 0:05% 0:01% 0:17% 0:04%

maximum error for bb�m 0:21% 0:04% 0:71% 0:13%

average % error for bb�m 1:40% 0:55% 9:68% 8:40%

maximum % error for bb�m 3:74% 1:51% 19:4% 12:1%

average % error for bb��1 0:05% 0:01% 0:15% 0:04%

maximum % error for bb��1 0:17% 0:04% 0:53% 0:14%

average % error for bb��2 0:37% 0:37% 1:10% 1:17%

maximum % error for bb��2 0:65% 0:45% 2:02% 1:44%

average % error for bb�m;a 1:18% 0:52% 10:0% 9:13%

maximum % error for bb�m;a 3:97% 1:30% 29:2% 12:58%

average error for eb�m 0:04% 0:01% 0:12% 0:03%

maximum error for eb�m 0:13% 0:03% 0:39% 0:10%

average % error for eb�m 0:79% 0:49% 7:07% 8:32%

maximum % error for eb�m 2:28% 1:14% 13:9% 10:4%

average % error for eb��1 0:03% 0:01% 0:08% 0:02%

maximum % error for eb��1 0:07% 0:02% 0:20% 0:06%

average % error for eb��2 0:39% 0:37% 1:21% 1:15%

maximum % error for eb��2 0:51% 0:40% 1:55% 1:24%

average % error for eb�m;a 0:79% 0:50% 7:95% 9:14%

maximum % error for eb�m;a 2:14% 1:16% 15:4% 11:37%

Notes: The symbol bb indicates that simulated series are used to construct the statistics for the true
and the approximating law of motion (using a sample length equal to the one used to estimate the

parameters of the approximating law of motion). The symbol eb indicates that the true moments
implied by the true and approximating laws of motion are used. The standard deviation of the
underlying process is equal to 2.5%.
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Table 7: Impulse Response Functions - Experiment 1

1:1 1:2
T 1000 3; 000 50; 000 1000 3; 000 50; 000

average error for ebi1 0:28% 0:16% 0:04% 1:24% 0:75% 0:17%

maximum error for ebi1 0:76% 0:56% 0:11% 3:69% 2:16% 0:48%

average error for ebi2 9:74% 9:76% 9:92% 39:22% 39:2% 39:4%

maximum error for ebi2 10:6% 10:2% 10:2% 43:0% 41:3% 39:8%

average error for ebi3 10:1% 10:2% 10:4% 53:0% 53:0% 53:2%

maximum error for ebi3 11:0% 10:7% 10:4% 56:8% 55:2% 53:7%

average error for ebi4 9:59% 9:65% 9:72% 56:3% 56:3% 56:6%

maximum error for ebi4 10:5% 10:2% 9:86% 60:0% 58:7% 57:0%

average error for ebi5 8:96% 9:04% 9:12% 55:3% 55:4% 55:7%

maximum error for ebi5 9:98% 9:62% 9:28% 59:0% 57:8% 56:2%

average error for ebi50 4:44% 3:96% 3:67% 19:5% 18:4% 17:5%

maximum error for ebi50 7:85% 5:28% 4:01% 29:6% 22:9% 18:7%

average error for ebi100 4:90% 4:49% 4:26% 20:7% 19:3% 18:4%

maximum error for ebi100 7:91% 5:54% 4:53% 31:5% 23:7% 19:6%

Notes: Here ij indicates the jth-period response. Errors are calculated as a fraction of the true
�rst-period response. The standard deviation of the underlying process is equal to 2.5%.
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Table 8: Moments - Experiment 2

2:1 2:2
T 3; 000 3; 000

average error for bb�m 0:05% 0:04%

maximum error for bb�m 0:17% 0:12%

average % error for bb�m 3:03% 1:61%

maximum % error for bb�m 12:8% 6:97%

average % error for bb��1 0:01% 0:21%

maximum % error for bb��1 0:09% 0:85%

average % error for bb��2 0:03% 0:41%

maximum % error for bb��2 0:15% 1:68%

average % error for bb�m;a 0:70% 1:51%

maximum % error for bb�m;a 2:08% 4:31%

average error for eb�m 0:23% 0:25%

maximum error for eb�m 0:34% 0:32%

average % error for eb�m 3:98% 1:97%

maximum % error for eb�m 9:87% 5:20%

average % error for eb��1 0:02% 0:27%

maximum % error for eb��1 0:03% 0:66%

average % error for eb��2 0:06% 0:55%

maximum % error for be��2 0:09% 1:29%

average % error for eb�m;a 1:53% 1:13%

maximum % error for eb�m;a 3:24% 3:62%

Notes: The symbolbb indicates that simulated series are used to construct the statistics for the true
and the approximating law of motion using a sample length equal to the one used to estimate the
parameters of the approximating law of motion. The symbol eb indicates that the true moments
implied by the true and approximating laws of motion are used. The standard deviation of the
underlying process is equal to 2.5%.
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Table 9: Impulse Response Functions - Experiment 2

2:1 2:2
T 3; 000 3; 000

average error for ebi1 2:22% 0:05%

maximum error for ebi1 6:19% 0:22%

average error for ebi2 4:54% 0:71%

maximum error for ebi2 12:5% 1:23%

average error for ebi3 6:93% 1:34%

maximum error for ebi3 18:7% 2:19%

average error for ebi4 9:37% 1:89%

maximum error for ebi4 24:9% 3:05%

average error for ebi5 11:8% 2:38%

maximum error for ebi5 31:0% 3:83%

average error for ebi50 40:7% 2:01%

maximum error for ebi50 85:2% 3:08%

average error for ebi100 9:11% 0:22%

maximum error for ebi100 18:3% 0:32%

Notes: Here ij indicates the jth-period response. Errors are calculated as a fraction of the true
�rst-period response. The standard deviation of the underlying process is equal to 2.5%.
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Figure 1: True and predicted K'  (updated values for K used in approximating law)  

Panel A: Experiment 1.1 

 
Panel B: Experiment 1.2 

 
 
Notes: The graph plots the first 250 observations of the first Monte Carlo replication. The R2 
refers to the fit of the complete sample with 3,000 observations. 
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Figure 2: True and predicted K' (updated values for K not used in approximating law) 

Panel A: Experiment 1.1 

 
Panel B: Experiment 1.2 

 
 
Notes: This is the fundamental accuracy plot. The graph plots the first 250 observations of the 
first Monte Carlo replication. The R2 refers to the fit when the approximating law of motion is 
updated using the true observations of K as explanatory variables as in Figure 1.  
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Figure 3:  Impulse response functions 

Panel A: Experiment 1.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Experiment 1.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The graph plots the response of Kt in response to a productivity shock. The R2 refers to 
the fit in simulated data when the approximating law is updated using the true observations of 
K as explanatory variable. 
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Figure 4: True and predicted K' (updated values for K not used in approximating law) 

Panel A: Experiment 2.1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Experiment 2.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: This is the fundamental accuracy plot. The graph plots the first 250 observations of the 
first Monte Carlo replication. The R2 refers to the fit when the approximating law of motion is 
updated using the true observations of K as explanatory variables.   
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Figure 5: True and predicted K - (updated values for K not used in approximating law) 

Experiment 2.2 – part of simulation where maximum error occurs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: This is the fundamental accuracy plot. The R2 refers to the fit when the approximating 
law of motion is updated using the true observations of K as explanatory variables.  
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Figure 6: Impulse response functions 

Panel A: Experiment 2.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Experiment 2.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The graph plots the response of Kt in response to a productivity shock. The true law of 
motion is non-linear and the IRFs depend on initial conditions; the IRFs of the approximating 
law of motion do not depend on initial conditions, because the approximating law of motion 
is linear. The R2 refers to the fit in simulated data when the approximating law is updated 
using the true observations of K as explanatory variable. 
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