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1 Introduction1

This paper describes the algorithm used to solve the model with incomplete markets2

and aggregate risk of Den Haan, Judd, and Juillard (2009). The algorithm of Krusell3

and Smith (1998), the most popular algorithm to solve this type of model, consists4

of an iterative procedure and in each iteration a simulation of the economy with the5

approximating solution is used to solve for the law of motion of aggregate capital.6

The simulation procedure of Krusell and Smith (1998) has two types of sampling7

variation. The �rst is due to using a �nite instead of a continuum of agents. As8

shown below, this sampling variation can be avoided. The sampling variation that9

is due to the aggregate shock, however, seems unavoidable. Using simulated data to10

obtain numerical solutions has two disadvantages. First, by introducing sampling11

noise the policy functions themselves become stochastic. This e¤ect can be reduced12

by using long time series, but sampling noise disappears at a slow rate. Second�13

and more importantly� the values of the state variables used to �nd the best �t14

for the aggregate law of motion are endogenous and are typically clustered around15

their means. But accuracy can be improved by using values that are more spread16

out.1 In particular, the numerical literature advocates the use of Chebyshev nodes17

to ensure uniform convergence and the procedure used here allows for this e¢ cient18

choice of grid points.19

The algorithm described here uses projection methods and can� in principle�20

solve the model without relying on any simulation procedure. Using projection21

procedures to solve a model with a continuum of agents typically requires a para-22

meterization of the cross-sectional distribution as in Den Haan (1997).2 We improve23

on the procedure proposed in Den Haan (1997) in the following way. If one parame-24

terizes the cross-sectional distribution, then all parameters of the density are state25

variables. For example, if one use a Normal density then there are two parameters,26

i.e., the mean and the variance, and thus two state variables.3 But note that using27

a Normal density has implications for the higher-order moments. These implied28

higher-order moments may not be correct. For example, a Normal density implies29

no skewness, but the model one tries to solve may have a skewed distribution. In30

that case one could allow for more general approximating functions with more free31

1Recall that the standard errors of regression coe¢ cients, �2(X 0X)�1, are lower when the x-
values are more spread out.

2Den Haan and Rendahl (2009) show that aggregation without explicit distributional assump-
tions is possible when the individual policy functions are linear in the coe¢ cients. They implicitly
obtain information about the distribution by approximating auxiliary policy rules.

3As shown below, one can establish a mapping between the parameters of the approximat-
ing density and a set of moments even if more �exible densities are used. Instead of using the
parameters of the density, we always use moments as state variables.
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parameters. The problem of adding coe¢ cients to the approximating density is that1

one also adds state variables. Our procedure uses an approximation for the density2

that allows for more �exibility, but does not increase the number of state variables.3

The idea is the following. Suppose one starts with the Normal as the approxi-4

mating cross-sectional density and uses the mean and the variance as state variables.5

Using this approximating density one can obtain a numerical solution of the model6

using standard projection methods and without any simulation. Now that one has7

obtained a numerical solution one can ask the question whether the cross-sectional8

density is described accurately with a Normal density. To answer this question one9

has to rely on a simulation. Suppose that after simulating a panel and calculating10

the higher-order (unconditional) cross-sectional moments, one concludes that the11

Normal does not provide an accurate representation. When using the algorithm of12

Den Haan (1997), one would use a higher-order approximation of the cross-sectional13

distribution and increase the number of state variables.14

But one can also modify the functional form of the cross-sectional distribution15

without adding state variables. This is the approach followed here, that is, the16

information obtained from the simulation is used to modify the functional form of17

the cross-sectional distribution. Thus, if the Normal is not accurate one would use at18

each point on the grid a density that (i) implies values for the higher-order moments19

equal to the values found in the simulation and, of course, (ii) implies values for the20

lower-order moments that are included as state variables. The algorithm iterates21

on this procedure until the information provided by the simulation is consistent22

with the assumptions made about the shape of the cross-sectional distribution. The23

philosophy that underlies our algorithm is similar to the one in Reiter (2009). The24

di¤erences are mainly in terms of implementation, which is less cumbersome for our25

algorithm.26

Although we rely on a simulation procedure, it plays a much smaller role than in,27

for example, the algorithm of Krusell and Smith (1998); it is only used to determine28

the shape of the density. The procedure to solve for the policy rules uses standard29

projection techniques without a simulation step.30

Algan, Allais, and Den Haan (2008) (AAD hereafter) propose a new procedure31

to simulate cross-sections with a continuum of agents. The most common procedure32

to simulate models with a continuum of agents consists of using a �nite number of33

agents and a random number generator to draw the idiosyncratic shocks. Conse-34

quently, the results are subject to cross-sectional sampling variation. Models with35

a continuum of agents do not have this property and most solution procedures are36

based on this lack of sampling variation.4 AAD show that sampling variation can37

4For example, solution procedures typically specify that next period�s distribution is fully de-
termined by the current distribution and aggregate shocks.
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be substantial and that properties of the laws of motion may be overlooked because1

of the presence of cross-sectional noise. In this note, we compare three procedures2

that all avoid cross-sectional sampling variation.3

2 Algorithm4

This section provides an overview of the key ingredients of the algorithm.55

Projection method. The numerical solution of the incomplete markets model6

with aggregate uncertainty in Den Haan, Judd, and Juillard (2009) consists of a7

policy function k0("; k; a; s; 	k), where " is the (exogenous) individual employment8

status,6 k the individual capital stock, a the exogenous aggregate state, s a set9

of variables that characterizes the cross-sectional joint distribution of capital and10

employment status, and 	k the coe¢ cients of the policy function. The variable s11

refers to the beginning-of-period distribution after the new employment status has12

been observed.13

The standard projection procedure to solve for 	k consists of the following three14

steps.15

1. Construct a grid of the state variables.16

2. At each grid point, de�ne an error term, v, given values for ", k, a, and s as17

v("; k; a; s; 	k) =
1
c
�
P

"0;a0

h
�(r0+1��)

c0

i
�aa0""0

= 1
(r+1��)k+wl�k0(";k;a;s;	)

�
P

"0;a0

h
�(r0+1��)

(r0+1��)k0(";k;a;s;	)+w0l0�k0("0;k0;a0;s0;	)

i
�aa0""0

= 1
(r+1��)k+wl�k0(";k;a;s;	)

�
P
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h
�(r0+1��)

(r0+1��)k0(";k;a;s;	)+w0l0�k0("0;k0(";k;a;s;	);a0;s0;	)

i
�aa0""0

with
l = (1� �)l"+ �(1� "), l0 = (1� � 0)l"0 + �(1� "0),
r = �a

�
K

l(1�u(a))

���1
, r0 = �a0

�
K0

l(1�u(a0))

���1
,

w = (1� �)a
�

K
l(1�u(a))

��
, w0 = (1� �)a0

�
K0

l(1�u(a0))

��
,

� = �u(a)

l(1�u(a)) , and �
0 = �u(a0)

l(1�u(a0)) :

(1)

5A more in depth discussion can be found in AAD.
6The value of " is equal to 0 when the agent is unemployed and equal to 1 when the agent is

employed.
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Here, K is the aggregate capital stock, u is the unemployment rate (which is1

determined by the aggregate exogenous state a), r is the rental rate, and w is2

the wage rate. If the worker is employed then he works l hours and his labor3

income equals (1� �)wl. If he is unemployed then he receives �w. The �rst-4

order conditions of the agent, evaluated using the numerical solution v(�j ),5

correspond to the following set of conditions:6

v("; k; a; s; 	k) � 0,
v("; k; a; s; 	k)k

0 = 0, and
k0 � 0,

(2)

for all possible values of ", k, a, and s.7

3. 	k is found by minimizing some objective criterion that weighs the values of8

the error terms at the nodes of the grid.9

Two things are needed to be able to evaluate v("; k; a; s; 	k). First, s and a must10

pin down K. If K would be an element of s then this would be trivial. Second,11

it must be possible to obtain the values of s0 as a function of a, a0, and s. This12

can be done if s implies an actual cross-sectional distribution. The cross-sectional13

distribution of the current period together with the individual policy function can14

then determine the characteristics of next period�s distribution (and thus s0) using15

standard quadrature techniques. Next, we explain how this can be done.16

Linking s to a cross-sectional distribution. Let the �rst NM moments of the17

strictly positive capital holdings of agents with employment status ! be given by18  ��
m!;j, with j 2 f1; � � � ; NMg and suppose that these are elements of s.7 To link19

this set of moments with a density, we approximate the density of individual capital20

holdings with a �exible functional form P (k; �!) and choose the parameters �!21

such that the moments of the density coincide with those speci�ed.8 The following22

functional form is used.23

P (k; �!) = �!0 exp

0BBBBB@
�!1

h
k �
 ��
m!;1

i
+

�!2

��
k �
 ��
m!;1

�2
�
 ��
m!;2

�
+ � � �+

�!NM

��
k �
 ��
m!;1

�NM � ����m!;NM

�
1CCCCCA : (3)

7We set ! equal to e when the agent is employed and equal to u when the agent is unemployed.
An arrow pointing left (right) denotes beginning(end)-of-period values.

8To completely characterize the cross-sectional distribution one would also need to include in s
the fraction of agents at the constraint.
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The advantage of this particular functional form is that the coe¢ cients �!1 ; � � � ; �!NM1

can be found with the following minimization routine.2

min
�!1 ;�

!
2 ;��� ;�!N

M

1Z
0

P (k; �!)dk: (4)

The reason is that the �rst-order conditions of this minimization problem are3

exactly the conditions that the �rst NM moments are equal to the set of speci�ed4

moments.5

1Z
0

h
k �
 ��
m!;1

i
P (k; �!)dk = 0

1Z
0

h
(k �

 ��
m!;1)2 �

 ��
m!;2

i
P (k; �!)dk = 0

� � �
1Z
0

h
(k �

 ��
m!;1)NM �

 ����
m!;NM

i
P (k; �!)dk = 0

(5)

AAD show that the minimization problem is convex, which means that the �rst-6

order conditions are monotone and thus easy to solve.9 The coe¢ cient �w0 is de-7

termined by the condition that the density integrates to one. By increasing the8

number of moments one increases the order of the approximating polynomial and9

the accuracy of the approximation.10

The approximating densities are used to determine s0 and are not necessarily of11

interest to the researcher. In fact, it may very well be the case that accurate predic-12

tions of s0 can be obtained with approximating densities that are not accurate in all13

aspects. We document this in Section 3 by showing that an approximating density14

with continuous support (for strictly postive capital levels) can accurately predict15

next period�s moments even though the true cross-sectional density has points with16

positive point mass, i.e., the CDF is discountinous.17

Solving the model without simulation. The algorithm as it is described now18

can be executed without any simulation. That is,  k can be chosen to minimize19

a loss function over the residuals de�ned in equation 1. The problem is that to20

obtain an accurate solution one would need several moments as state variables, that21

9For alternative speci�cations of the functional form one would have to solve the coe¢ cients
from a system like (5), which likely to be a more challenging numerical problem.
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is, the value of NM cannot be too low. This statement seems to contradict the1

well-known �nding of Krusell and Smith (1998) that the cross-sectional mean is a2

su¢ cient state variable. But note that higher-order moments may not matter in3

predicting next period�s prices for di¤erent reasons. The �rst is that changes in4

them truly have no e¤ect. But they also may not matter because their time-series5

variation is low.10 In the latter case, the e¤ect of the higher-order moments would6

be captured by the constant term in the time-series regression that relates next7

period�s mean capital stock to this period�s mean capital stock. AAD �nd that8

higher-order moments do matter and that they have to be included to get the shape9

of the cross-sectional distribution right. But using information about higher-order10

moments to get the shape of the cross-sectional distribution right does not mean11

that one has to include all higher-order moments as state variables. This is the idea12

behind reference moments and will be discussed next.13

Reference moments. In the algorithm described so far, the cross-sectional den-14

sity at a node on the grid was determined by the set of moments included as state15

variables. But suppose that in addition to the moments that are included as state16

variables one also has information about higher-order moments. Higher-order mo-17

ments that are not included as state variables, but used to determine the density18

are referred to as reference moments. For example, when only the mean is used as19

a state variable one may have information about the variance. But if the variance20

is not a state variable, then one needs to provide information about it from outside21

the projection procedure. One possibility would be to obtain this information from22

the solution of the model without aggregate uncertainty. Another possibility, and23

the one that is chosen here, is the following. Start with a guess for the reference24

moments, solve the model using the algorithm described above, and then simulate25

the economy. The simulated panel can be used to update the information about26

the reference moments. The simplest thing to do would be to use the unconditional27

values of the cross-sectional moments. We use the values of the cross-sectional28

moments conditional on the realization of a. Alternatively, one could relate the29

reference moments to the values of all included aggregate state variables. Note that30

this would only require a simple regression using data from the simulated economy.31

At each node on the grid, the regression results can then be used to determine the32

appropriate values of the reference moments.33

10Another possibility is that the time-variation of higher-order moments is related to movements
in the mean.
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Discussion of choices made. Several choices were motivated by convenience,1

such as, similarity to choices made in other numerical work. Here we discuss choices2

that the reader should be aware o¤. To simplify the description of the algorithm,3

we assumed that we had an approximation function for next period�s state variable,4

k. But one can just as well approximate the consumption choice or the conditional5

expectation and we chose the latter.11 We approximate the conditional expectation6

using Chebyshev polynomials. This and a grid constructed using Chebyshev nodes7

leads to several desirable convergence properties.12 But there are also disadvan-8

tages. First, the conditional expectation displays a sharp non-di¤erentiability at9

the lowest level of k at which the agents chooses a zero capital stock, k("; a; s). For10

k � k("; a; s), however, the conditional expectation does not have to be approxi-11

mated, so we simply approximate the conditional expectation on those grid points12

at which the constraint is not binding. But this means not using the full set of13

Chebyshev nodes and some of the optimality properties may be lost. Moreover, the14

conditional expectation has other� less pronounced� non-di¤erentiabilities due to15

the interaction of the constraint and the discrete support of ".13 In this particular16

problem these disadvantages are minor because the constraint only binds at very low17

levels of k, but when the constraint plays a more important role the reader should18

seriously consider using splines.19

Another choice that the reader should be aware of is that we parameterize the20

law of motion relating s0 to the current-period aggregate state variables. Condi-21

tional on this law we then solve for the individual policy rules and then update the22

aggregate law of motion by projecting the calculated values of s0 on the grid on the23

approximating functional form. It is possible that this sequential updating improves24

the stability of the algorithm when solving complex models. But if convergence is25

not an issue, then it makes more sense not to use this two-step procedure. Even if26

one would like an approximating aggregate law of motion, then it would be better27

to solve the model using the algorithm outlined above and then simply get an ap-28

proximation for the aggregate law after one has obtained the solution of the model.29

Further information on the choices made can be found in the appendix and in AAD.30

11Some motivation for choosing the conditional expectation is given in Christiano and Fischer
(2000).
12See Judd (1998, p. 221).
13See Den Haan (1997, Figure 2).
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3 Simulating a continuum cross-section of agents1

Simulation procedures ful�ll an important role in the numerical analysis of models2

with heterogeneous agent models. The popular procedure of Krusell and Smith3

(1998) uses simulated cross-sectional moments to determine the aggregate law of4

motion. Even in our algorithm� that is designed to obtain numerical solutions5

to the policy functions without simulation procedures� we still use a simulation6

procedure to reduce the dimension of the set of state variables while keeping an7

accurate shape of the cross-sectional density. And even if an algorithm does not rely8

on a simulation procedure at all, then many characteristics of the solution can only9

be determined using a simulation procedure.10

Given the importance of simulation procedures, it is important to compare al-11

ternatives. The most popular procedure is to use a �nite set of agents and to use12

a random number generator to determine the realizations of the idiosyncratic and13

common shocks. But this means that the outcome is subject to cross-sectional sam-14

pling variation, whereas both the model and the algorithm typically rely on there15

being none. AAD show that this sampling variation can be substantial especially16

for the smaller group in the population such as the unemployed.17

There are, however, procedures that avoid cross-sectional sampling variation, but18

to the best of our knowledge these have not been compared. Section 3.1 outlines19

three di¤erent simulation procedures, Section 3.2 compares the three simulation20

procedures for the model discussed here and for a model in which the CDF displays21

substantial discontinuities.22

3.1 Three simulation procedures23

To simplify the exposition we explain how to simulate across time a cross-sectional24

distribution of capital holdings when there are no shocks and no constraint, that is,25

when the policy function for k0 is given by k(k).1426

14For most sensible choices of k(k); the distribution would then converge towards a single point.
Adding stochastic elements that would prevent this is easy, but would make the exposition some-
what more tedious.
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3.1.1 Simulation procedure of AAD1

Let ft(k) be the distribution of capital holdings in period t and let f1 be given.15,162

Calculate the �rst NM moments of the distribution of k0 using quadrature methods.3

The inputs are the policy function, k0(k), and the initial distribution, f1. Using the4

procedure discussed in Section 2 one can then obtain the density f2(k) that corre-5

sponds to these NM moments.
17 Iteration on this procedure gives a time series ft(k).6

Given ft(k), any characteristic of the cross-sectional distribution can be calculated.7

3.1.2 Grid-based procedure of Young188

Construct a grid of capital holdings, ��j, �j = 0; � � � ; N , and let p�jt be equal to the
mass of agents with a capital stock equal to ��j. We have

NX
�j=0

p
�j
t = 1:

Calculate the values for pjt+1 using the following algorithm.9

� Initialize by setting pjt+1 = 0 for all j.10

� Calculate the values of pjt+1 using the following procedure for �j = 0; � � � ; N .11

�Calculate k0(��j). Let j be such that �j � k0(��j) < �j+1.12

�The mass at the �jth grid point, p
�j
t , is allocated to the two grid points that

enclose the choice k0(��j)� i.e., the jth and the (j + 1)
th grid point� using

the distance of k0(��j) to the two grid points to determine the fractions.
Thus,

pjt+1 = pjt+1 +
�j+1 � k0(��j)
�j+1 � �j

p
�j
t

15Alternatively, one can start the procedure with NM moments. The density f1(k) can then be
determined using the procedure of Section 2.
16It is easy to modify the procedure to include a constraint. ft(k) would in that case be the

density of the strictly positive capital holdings and one would in addition keep track of the mass
of agents at the constraint.
17If there are no constraints on the range of k, then one has to choose a lower and an upperbound

for k that are outside the ergodic set or at least such that the mass below and above these two
values is very small.
18Proposed in Young (2009).
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and

pj+1t+1 = pj+1t+1 +
k0(��j)� �j
�j+1 � �j

p
�j
t

� The sum of all the pjt+1s is by construction equal to 1.1

In the model without aggregate uncertainty, this procedure can be expressed as2

a linear system that can be used to solve for the stationary distribution (and thus3

the equilibrium aggregate capital stock) by solving for the normalized eigenvector4

corresponding to the unit eigenvalue.5

3.1.3 Grid-based procedure of Ríos-Rull196

Again construct a grid of capital holdings, �j, j = 0; � � � ; N . Let �p0t be the mass of
agents at �0 and let �p

j
t be equal to the mass of agents with a capital stock bigger

than �j�1 and less than or equal to �j, for j > 0.20 This mass is assumed to be
distributed uniformly between grid points. We have

NX
j=0

�pjt = 1:

Let xj be equal to the capital level at which an agent chooses �j.21 Note that7

whereas the procedure proposed by Young simply uses the capital choice at a set of8

nodes, this procedure uses the inverse of the capital choice. Thus,9

k0(xj) = �j: (6)

Now compute the distribution function of next period�s capital at the grid points as10

�P jt+1 =

Z xj

0

d �Pt+1(k) =

jX
j=0

�pjt +
xj � �j
�j+1 � �j

�pj+1t ; (7)

where j = j(xj) is the largest value of j such that �j � xj. The second equal-11

ity follows from the assumption that mass is distributed uniformly between grid12

points. Note that �p0t+1 = �P 0t+1 and �p
j
t+1 = �P jt+1 � �P j�1t+1 for j > 0. Modifying the13

distribution to take into account unemployment risk is� as for the procedure of14

Young� straightforward.15

19This procedure is used in Ríos-Rull (1997), Heathcote (2005), Reiter (2006), and Den Haan
(2009).
20Note that �pjt is not equal to p

j
t (used in the last subsection), except for j = 0. p

j
t is the mass

at a grid point and �pj is the mass between grid points.
21Note that if the capital choice would depend on aggregate state variables then x would be time

varying.
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3.2 Comparison and discussion1

3.2.1 Experiment 12

In this experiment, we use our numerical solution for the individual policy functions3

of the model outlined above to simulate the cross-sectional distribution across time4

with the three simulation procedures for 10,000 periods. The initial distribution is5

identical to the one used in Den Haan (2009).6

We �nd that time-series plots of characteristics of the cross-sectional distrib-7

utions, such as moments and percentiles, are very similar. Not surprisingly, the8

largest di¤erences are observed in the description of the lower tail. For example,9

for the 1st percentile we �nd for the employed (unemployed) that the di¤erences are10

1.35% (2.48%), 1.60% (1.78%), and 0.76% (1.60%) for AAD versus Ríos-Rull, AAD11

versus Young, and Young versus Ríos-Rull, respectively.2212

3.2.2 Experiment 213

Generating an accurate simulated panel for the model of the model presented here is14

relatively easy, because there are very few constrained agents, which means that any15

subsequent jumps in the CDF for higher levels of capital are very small. Moreover,16

the marginal propensity to save is almost constant and only varies with capital at17

low levels of capital.18

Therefore, we also consider an example in which the marginal propensity to save19

varies strongly with capital and jumps in the CDF are important. Both features20

may give di¢ culties for the procedure of AAD. The continuous approximating den-21

sity used in the AAD procedure, of course, misses the jumps of the CDF. Missing22

these jumps is not important as long as the marginal propensity to save is (locally)23

constant, but may matter if the savings function is nonlinear.24

In the second experiment, the individual policy function, k0("; k) is assumed to
be equal to

k0(0; k) = max f0; k � 25g
for the unemployed agent (" = 0) and is equal to

k0(1; k) = �
0 + k + exp(�0 + �1k + �2k
2)

for the employed agent (" = 1). For the chosen parameter values,23 the marginal25

propensity to save of an employed agent varies from 0 when k = 0 to almost 1 when26

22Since the mass of agents in the �rst percentile is very small (between 3% and 9% for the
unemployed), these percentage di¤erences imply very small di¤erences for the mass of agents in
the �rst percentile.
23�0 = 2:70805; �1 = �0:06667; �2 = 0:000326, and 
0 = �0:6:
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k = 99. The laws of motion of the exogenous random variables are as in experiment1

1.2

Although these policy functions do not depend on the aggregate state, the choices3

still do because the employment status depends on the aggregate state. The cho-4

sen policy function may look strange, but is motivated by its ability to generate5

large jumps in the cross-sectional distribution. When the aggregate state randomly6

changes, then the distributions generated with di¤erent procedures look similar be-7

cause of these random aggregate shocks. The di¤erences between the solution proce-8

dures become more clear if we keep the economy in the same aggregate state. That9

is, the economy remains in either the good or the bad state. Those are the results10

reported here. The fraction of agents at the constraint is now substantially higher11

than in the problem discussed above. This higher fraction of constrained agents12

leads to several substantial jumps in the CDF as is clear in Figure 1 that plots the13

CDF obtained with the AAD and Young procedure when the economy has been in14

the bad state for a long time period.15

Figure 1 documents that the CDFs obtained with the di¤erent procedures dis-16

play substantial di¤erences. The CDF generated with the Young procedure nicely17

displays the jumps in the CDF that are also present in the true CDF. The CDF18

generated by the AAD procedure, of course, doesn�t have any jumps but it nicely19

approximates the distribution. That is, the inability of AAD to capture the jumps20

does not lead to a systematic bias.21

This is also documented by the time series of standard characteristics of the22

cross-sectional distribution that are very similar across the two procedures. This is23

documented in �gures 2 and 3, which plot the simulated mean capital stocks and24

the fraction of agents at the constraint when the economy is (and remains) in the25

bad aggregate state. Figures 4 and 5 report the results when the economy is (and26

remains) in the good aggregate state.27

28

3.2.3 Discussion29

Although the procedures are quite di¤erent, they generate very similar results in30

both experiments. Of course, our results may not carry over to all problems and31

one always should check whether the simulated data are accurate. But the results32

presented here indicate that convenience may be an important element in the choice33

made as well.34

In terms of programming, the easiest procedure is the one proposed by Young35

(2009). In contrast to the grid-based procedure of Ríos-Rull (1997), it does not36

12
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Figure 1: The cumulative distibution function for the employed and the unemployed
when the economy has been in the bad state for a long time.
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state

15



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

1 41 81 121 161 201 241 281 321

Time

m
e1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

m
u1

AAD Young Rios­Rull

Employed

Unemployed

Figure 4: The means of the employed and unemployed when the economy is in the
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Figure 5: The fraction of agents at the constraint when the economy is in the good
state
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require calculating the inverse, which can be a costly operation.24 Both grid proce-1

dures allow quite naturally for discontinuities in the CDF. But the second example2

showed that the procedure of AAD also can lead to an accurate characterization of3

the movements across time of key characteristics of the cross-sectional distribution,4

even in the presence of substantial discontinuities. The main advantage of the pro-5

cedure of AAD is that it characterizes the cross-sectional distribution with a much6

smaller number of parameters. For the procedures discussed here, the simulation7

procedure of AAD uses ten parameters whereas the grid-based method uses one8

thousand. For some applications, it may be extremely helpful to limit the number9

of parameters.10

A Appendix11

Table 1: Parameters of the numerical procedure
variable range number of grid points order of approximating polynomial

k [0; 99] 50 grid points 27
��!
mu;c
�1 [0; 0:002] 5 grid points 3
 ��
me;1 [35; 42:4] 5 grid points 3
 ��
mu;1 [33:5; 41:5] 5 grid points 3

The state variables used are

s =
h
a�1; a;

��!
mu;c
�1;
 ��
me;1;

 ��
mu;1

i
;

where
��!
mu;c
�1 stands for the fraction of constrained unemployed agents at the end of12

the last period, and
 ��
m!;1 stands for the beginning-of-period mean capital holdings13

of agents with employment status ! and strictly positive capital holdings. Note that14

this set of state variables has enough information to determine
 ��
mu;c and

 ��
me;c.25 In15

addition to these moments, we use �ve higher-order moments (for both the employed16

and the unemployed) to determine the density of the cross-sectional distribution. In17

the simulation we use a total of ten moments.18

24Reiter (2006) proposes several approximating steps to speed up the procedure.
25Alternatively, we could have used s = [a;

 ��
mu;c;

 ��
me;c;

 ��
me;1;

 ��
mu;1]. The advantage of our choice

is that a�1 can take on only two values and is, therefore, "cheaper" as a state variable than an
additional fraction of constrained agents.

18



Parameter settings of the numerical procedure, such as the order of the polyno-1

mial and the number of grid points, are given in Table 1. We use Chebyshev nodes2

as the grid points and the indicated range of the state variable is used to transform3

the variable into one that is between �1 and 1. For the exogenous random variables4

we use two grid points related to the two possible realizations.5
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