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Abstract

Users of regular higher-order perturbation approximations can face two problems:

policy functions with odd oscillations and simulated data that explode. We propose

a perturbation-based approximation that (i) does not have odd shapes, (ii) generates

stable time paths, and (iii) avoids the drawbacks that hamper the pruned perturba-

tion approach of Kim, Kim, Schaumburg, and Sims (2008). For models with nontrivial

nonlinearities, we find that our alternative and the pruned perturbation approxima-

tions give a good qualitative insight in the nonlinear aspects of the true solution, but

can differ from the true solution in some quantitative aspects, especially during severe

peaks and troughs.
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1 Introduction

Perturbation has become a popular choice to solve dynamic stochastic general equilibrium

(DSGE) models. Unfortunately, regular higher-order perturbation approximations are

not guaranteed to generate non-explosive time paths. Moreover, regular perturbation

approximations are polynomials and the unavoidable oscillations of polynomials imply that

higher-order approximations do not inherit properties such as monotonicity and convexity

from the true underlying policy functions. This is a problem facing all approximation

procedures that use polynomials as basis functions. The problem is especially severe

for perturbation approximations, because perturbation analysis does not give the user the

tools to relocate these problems to those areas of the state space that are of no importance.1

Consequently, the undesirable oscillations could occur close to the steady state.

To understand the problem, consider the following policy function:

x = f(x−1) = −α0 + x−1 + α1e
−α2x−1 , (1)

with α0 = 0.9e−1, a1 = 0.9, and a2 = 1. The true policy function has a unique fixed point

(at x = 1) and the dynamics are globally stable. Figure 1 plots this policy function and

the second-order perturbation approximation.2

At the fixed point, the second-order perturbation approximation inherits three key

properties of the true policy function: (i) increasing in x−1, (ii) strictly convex in x−1,

and (iii) the approximation is locally stable, that is, (∂f(x−1)/∂x−1)|x=1 < 1. For any

second-order polynomial with these properties, it must be true that the function value goes

to +∞ as x−1 goes to +∞. This means that the second-order perturbation approximation

must have a second intersection with the 45o line, which in turn implies that the dynamics

of the approximation are not globally stable.
1 In contrast, the user of projection methods does have this type of control by choosing the appropriate

grid. Typically, undesirable oscillations occur outside the grid, which means that one can push these

oscillations out of the relevant area by widening the grid. Moreover, uniform convergence is guaranteed if

one uses Chebyshev nodes; see Chapter 6.5 in Judd (1998) for a discussion.
2When perturbation analysis is applied to DSGE models, then the derivatives of the unknown policy

function are only implicitly defined. In this example, we know the (derivatives of the) policy function and

the perturbation approximation is simply the Taylor-series expansion of f(x−1).
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For the policy function defined in equation 1, the location of the second intersection

with the 45o line moves towards the steady state as α2 increases. If the second intersection

is suffi ciently far away from the steady state, then the instability will have no practical

consequences. In a non-stochastic environment, instability would then only occur when

the initial value for x−1 is far away from the steady state. In a stochastic environment,

the problematic part of the state space would only be reached in the case of extremely

unlikely events. In this paper, we will document, however, that these types of problems

cannot be ignored in practice.

Kim, Kim, Schaumburg, and Sims (2008) and Lombardo (2010) propose to use pruned

perturbation to deal with the problem of exploding simulated data.3 Pruning is already

used in several papers.4 The pruning procedure does not alleviate the problem that higher-

order perturbation approximations can have undesirable odd shapes. Moreover, pruned

perturbation approximations have some additional unattractive features. The regular

nth-order perturbation approximation uses one nth-order policy function to generate one

time path. In contrast, the pruning procedure generates multiple time paths; using the

time paths generated by lower-order approximations as the inputs for the higher-order

terms in the higher-order approximations. Consequently, the pruning procedure introduces

additional state variables. This implies that the pruned perturbation approximation is no

longer a function of the original set of state variables. Another striking feature of the

pruned perturbation procedure is that the nth-order pruned perturbation approximation

does not deliver an exact fit if the truth is an nth-order polynomial even though pruned

perturbation approximations are polynomials.5 This questions the suitability of pruned

perturbation approximations when the underlying function is close to a polynomial.

We propose an alternative, the perturbation-plus approximation, which generates stable

time paths, does not generate policy functions with odd shapes, and avoids the problems

3 In this paper, we propose a slight modification of the procedure of Kim, Kim, Schaumburg, and Sims

(2008) to ensure that the way in which higher-order perturbation adjusts the coeffi cients of the perturbation

approximation to the amount of uncertainty is not affected by the pruning procedure.
4See, e.g., Fahr and Smets (2010), Doh (2011), Fernández-Villaverde, Guerrón-Quintana, Rubio-

Ramírez, and Uribe (2011), and Andreasen (2012).
5See online appendix A.2.
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of pruning. It starts out with a first-order perturbation approximation. To solve for the

period-t model outcomes, we use the exact equations of the model for J periods, namely

for period t and if J > 1, also the J − 1 subsequent periods. To obtain a system with as

many unknowns as equations, we stipulate that the behavior in period t+J is determined

by the first-order perturbation approximation. Although the procedure is easy to program,

it is computing intensive unless the chosen value for J is low.

To evaluate whether the pruning and the perturbation-plus approximations are ac-

curate, we consider (i) models where the parameter values are above the critical levels

for which regular second-order perturbation approximations generate stable time paths

and (ii) models for which regular second-order perturbation generates time paths that

reach that part of the state space where the second-order approximation of a monotone

increasing function is decreasing. The fact that regular second-order perturbation approx-

imations face diffi culties indicates that these are models with nontrivial nonlinearities.6

There are many models for which the true solution is close to being linear. If that is the

case, then a first-order perturbation approximation is likely to be accurate. If one would

use regular higher-order perturbation to solve such models, then the undesirable features

highlighted here would most likely occur outside the ergodic set, so one would not have to

worry about them.

Neither the pruning nor the perturbation-plus approximations are in general very accu-

rate, although we found some cases where the perturbation-plus approximation is accurate.

Although the two modifications to the standard perturbation procedure do not always pass

the accuracy tests with flying colors, the news is not all bad. Both procedures provide a

good qualitative insight in how the true time path differs from the path generated by first-

order perturbation. That is, the methods provide a reasonable idea about the nonlinear

effects, which are substantial in the models considered. Of course, there is no guarantee

that these results carry over to other models and the user should be careful in using these

procedures, especially in those cases when the nonlinearities are so important that regular

6Although these are nontrivial models, it is straightforward to obtain accurate approximations using

projection methods, because the number of state variables is small.
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higher-order perturbation approximations generate exploding series.

The organization of this paper is as follows. In section 2, we describe the economic

models. In section 3, we explain the problems of higher-order perturbation. In section

4, we discuss the pruning procedure and its drawbacks as well as our alternative, the

perturbation-plus approximation. In section 5, we evaluate the accuracy of these two

perturbation-based approximations. The last section concludes.

2 Models

In this section, we describe the models. The first model is the neoclassical growth model.

The second model is also a very simple model, namely a representative-agent business cycle

model in which the labor market is modeled using the Pissarides matching framework. The

third model is a simple model in which an agent faces idiosyncratic risk and uses one-period

bonds to smooth consumption.

2.1 Neoclassical growth model

The representative agent maximizes

max
{ct,kt}∞t=1

E1

∞∑
t=1

βt−1 c
1−γ
t − 1

1− γ

s.t.

ct + kt = eztkαt−1 + (1− δ)kt−1, (2)

zt = ρzzt−1 + εt, εt ∼ N(0, σ2
z), (3)

k0, z1 given.

The Euler equation is given by

1 = Et

[(
ct+1

ct

)−γ (
αezt+1kα−1

t + (1− δ)
)]
. (4)

If γ = δ = 1, then the model reduces to the Brock-Mirman model. This model is unusual

in the sense that there are analytical solutions for the two policy functions. They are given
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by

kt = αβeztkαt−1 and (5)

ct = (1− αβ)eztkαt−1. (6)

2.2 Matching model

There are two types of agents in the model: workers and entrepreneurs. Both types

of agents are members of a representative household. At the end of the period, the

household receives wages and firm profits from its members. These are distributed among

the household’s members for consumption.

Firms. In this model, the key decision is made by a representative entrepreneur. The

entrepreneur maximizes the discounted value of future firm profits. That is,

max
{vt,nt}∞t=1

E1

∞∑
t=1

βt−1

(
ct
c1

)−γ
((ezt − w)nt−1 − ψvt)

s.t.

nt = (1− ρn)nt−1 + pf,tvt, (7)

zt+1 =

 zt

−zt

with probability ρ̃z

with probability (1− ρ̃z)
(8)

n0, z1 given. (9)

Here, vt is the amount of vacancies posted by the firm, ψ the cost of posting a vacancy,

pf,t is the number of matches per vacancy, pf,tvt is the total number of new hires, ρn is the

exogenous separation rate, and ct is the consumption level of the representative household.

The wage rate, w, is assumed to be fixed.7 The firm takes the value of pf,t as given. Each

worker produces ezt . The value of zt can take on two values, namely −ζ and +ζ.

7Sticky wages are helpful in generating suffi cent employment volatility. Our fixed wage rate is such that

the employer never wants to fire the worker and the worker never wants to quit. Our wage rule is, thus, a

simple case of Hall (2005).
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The first-order conditions are given by

ψ = pf,t λt and (10)

λt = βEt

[(
ct+1

ct

)−γ
(ezt+1 − w + (1− ρn)λt+1)

]
, (11)

where λt is the Lagrange multiplier of the constraint that describes the law of motion for

nt. It represents the value that is generated when an extra worker is added to the firm’s

workforce.

Consumers. The representative household simply consumes the income earned by its

members. Thus,

ct = wnt−1 + (eztnt−1 − wnt−1 − ψvt) = eztnt−1 − ψvt. (12)

Matching market and equilibrium. The number of new hires is determined on a

matching market at which firms and the 1 − nt−1 workers that are not employed search

for a match. The total number of matches, mt, is given by

mt = φ0(1− nt−1)φv1−φ
t , (13)

which means that the number of matches per vacancy is given by

pf,t = φ0

(
1− nt−1

vt

)φ
. (14)

Equations (7), (10), (11), (12), and (14) form a system of five equations per period that

determine nt, vt, λt, ct, and pf,t as a function of nt−1 and zt.

Keeping the problem smooth. The variable pf,t is typically interpreted as a matching

probability and is restricted to be less than or equal to 1. This implies that the policy

function is no longer smooth. The reason is the following. When zt takes on very low

values, then λt < ψ. If λt < ψ, then the value of an extra employee is less than the posting

cost. If pf,t is restricted to be less than 1, then it is impossible to satisfy equation (10).

In itself this is not a problem. It simply means that firms post no vacancies, that is, the
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firm is at a corner solution. Perturbation analysis can no longer be used, however, if firms

occasionally hit corners.

To avoid this dilemma, we do not interpret pf,t as a probability and we allow pf,t to

exceed 1. That is, if pf,t exceeds 1, then mt > vt and firms simply hire more than one

worker on each posted vacancy.8 If pf,t is allowed to exceed 1, then there always is an

internal solution for vt as long as

λt > 0, (15)

a condition that is satisfied in our calibrated model.9

2.3 Modified Deaton model

The third model considered is a simple partial equilibrium model in which agents face

idiosyncratic income risk. The agent solves the following optimization problem:

max
{ct,at}∞t=1

E1

∞∑
t=1

βt−1

(
c1−γ
t − 1

1− γ − P (at)

)

s.t.

ct +
at

1 + r
= at−1 + ezt , (16)

zt = z̄ + εt and εt ∼ N(0, σ2
z), (17)

a0 given. (18)

Here, ct stands for the agent’s consumption level, at stands for the amount of assets chosen

in period t, zt is an exogenous random income component, and r is the exogenous interest

rate. There are two reasons why markets are not complete. First, there is only one

financial asset, namely a risk-free bond. Second, there are transactions costs associated

with trading in the financial asset, which we model as utility costs. Cash on hand is equal

to asset holdings plus income, xt = at−1 + ezt . Since zt is assumed to be i.i.d., xt is the

only state variable.

8This follows directly from equations (10) and (14).
9The restriction that nt cannot exceed 1 also introduces a nondifferentiability, but this turns out to be

irrelevant in our numerical analysis.
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The only difference with the model in Deaton (1991) is that we have a penalty function

and not a non-negativity constraint. That is, Deaton (1991) assumes that

at ≥ 0. (19)

We specify our transactions cost or penalty function such that this inequality constraint

is a special case of the model. In particular, the penalty function, P (at), is given by

P (at) =
η1

η0

exp(−η0at) + η2at. (20)

The value of η0 controls the curvature of the penalty function and the nonlinearity of the

problem. Suppose that η2 = 0.10 Then

lim
η0−→∞

P (at) =

 ∞ for at < 0

0 for at ≥ 0
. (21)

That is, as η0 −→ ∞ our penalty function implements the standard non-negativity con-

straint on at.

The penalty function not only makes the model more general, it also makes it pos-

sible to use perturbation techniques, since perturbation techniques cannot deal with the

nondifferentiability introduced by the inequality constraint.11

The Euler equation is given by

c−γt
1 + r

+
∂P (at)

∂at
= βEt

[
c−γt+1

]
. (22)

10The term η2at gives additional flexibility, which we exploit in the calibration. The additional term

also makes it possible to ensure that the penalty term is equal to zero in the steady state, which may be

convenient in some applications.
11De Wind (2008) compares the properties of the model with the inequality constraint given in equa-

tion (19) with the corresponding properties of the model with the penalty function for different values of

η0. Not surprisingly, the value of η0 matters a lot for the tails of the generated distribution of at. In

particular, the tail of the distribution generated with the model with a penalty function only matches the

tail of the model with the non-negativity constraint for suffi ciently high values of η0. But model properties

such as the volatility of individual consumption depend a lot less on the value of η0.
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3 Higher-order perturbation in practice

In the introduction, we mentioned two potential problems of higher-order perturbation,

namely undesirable shapes and instability. The question arises whether these problems

matter, that is, whether they occur in the relevant part of the state space in practice. Of

course, the problems do not occur if the shocks hitting the system are suffi ciently small.12

In this section, we shed light on this question by analyzing the perturbation approx-

imations of the solutions to the models of section 2. Before discussing the results, we

describe the characteristics of perturbation approximations.

3.1 Characteristics of perturbation approximations

DSGE models can typically be written as follows:

0 = Et [H(xt, xt−1, yt+1, yt, zt+1, zt)] , (23)

zt+1 = Λzt + εt+1, (24)

εt+1 ∼ N(0, σΩ). (25)

Here, xt−1 is an nx × 1 vector containing the state variables of the system, yt is an ny × 1

vector containing the endogenous variables that are not state variables, zt is an nz×1 vector

with the exogenous random variables, εt is the vector with the corresponding innovations,

σ is a scalar that controls the overall volatility of the model (σ ≥ 0), and σΩ is the nz×nz
covariance matrix of the innovations. Finally, H(·) is a known vector-valued function with

dimension (nx + ny)× 1.

We denote the true rational expectations solution by xt

yt

 =

 f(xt−1, zt;σ)

g(xt−1, zt;σ)

 (26)

and the nth-order perturbation approximation by xt

yt

 =

 f̃nth (xt−1, zt;σ)

g̃nth (xt−1, zt;σ)

 . (27)

12 In fact, linear approximations are accurate if the shocks are "suffi ciently" small and the solution is

differentiable.
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Let st denote the arguments of the policy function, that is, st = [xt−1, zt;σ], let ns be the di-

mension of s, and let s̄ denote the corresponding steady state values, that is, s̄ = [x̄, 0; 0].13

The numerical approximation f̃(·)nth is an nth-order perturbation approximation if the fol-

lowing conditions hold:

f(st)|st=s̄ = f̃nth (st)
∣∣∣
st=s̄

∂if(st)∏ns

j=1
∂s
i∗(j)
j,t

∣∣∣∣∣∣
st=s̄

=
∂if̃

nth (st)∏ns

j=1
∂s
i∗(j)
j,t

∣∣∣∣∣∣
st=s̄

and ∀i = 1, · · · , n; 0 ≤ i∗ (j) ≤ i

3 i =
∑ns

j=1
i∗ (j)

(28)

A similar set of conditions determines whether g̃nth (·) is an nth-order approximation.

The true policy functions and the numerical approximations are functions of the en-

dogenous state variables, xt−1, and the exogenous state variables, zt. This property is

an important aspect of recursive models. Our formulations of both the true solution and

the regular perturbation approximation allow for the possibility that a particular state

variable has no effect on a particular choice, but it does not allow for variables other than

the state variables to have an effect. Although this is a standard property of rational

expectations solutions and numerical approximations, we highlight this property because,

as shown below, the pruning approximation does not satisfy this property.

3.2 Perturbation approximations and the neoclassical growth model

It is well known that both log-linear and linear approximations are accurate for the neo-

classical growth model as long as σz takes on plausible values. In fact, the solution of the

Brock-Mirman model is a log-linear function of capital and productivity. Consequently,

any perturbation approximation will recover the true rational expectations solution if the

model is written in the logarithms of the variables. To ensure that the problem remains

13The perturbation approximation procedure is a Taylor series expansion around the steady and around

the case with σ = 0. This is the reason why we explicitly include σ as an argument of the policy function.
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nontrivial, even when we consider the Brock-Mirman version, we calculate approximations

in the levels of the state variables, not in the logarithms.

Consistent with the facts stated in the last paragraph, we find that the higher-order

terms of higher-order perturbation approximations are quantitatively small for parameter

values commonly used in the literature. The perturbation approximations are then not

affected by the problems discussed in the introduction. Therefore, we also consider values

for σz that are higher than those normally used. Although the objective of this section is to

analyze the problems of higher-order perturbation approximations researchers encounter

in practice, it is still useful to consider these not so typical parameter values. There are two

reasons. First, the simplicity of the model makes it easy to understand why higher-order

perturbation approximations run into problems; a better understanding of the problems

in such a simple case is helpful in understanding the problems in more complex cases.

Second, the analysis points out that the highlighted problems eventually show up for

some parameter values, even in models with very simple nonlinearities.

Non-monotonicity of second-order perturbation approximations. Panel A of

Figure 2 plots the perturbation approximation of the capital policy function when σz is

equal to 0.007, a very standard value. The policy functions are plotted as a function of

kt−1 for three different values of zt.14 The results are shown for the Brock-Mirman model,

that is, γ = δ = 1. The other parameter values take on standard values.15

It is impossible for standard second-order perturbation approximations to be monoton-

ically increasing (or decreasing). As documented by the figure, the problematic decreasing

part occurs, however, when the capital stock is very high, namely when it is more than

2.5 times its steady state value. Simulated values for the capital stock would not reach

such high values when σz = 0.007.16 If the approximation remains unchanged, then an

increase in σz would simply increase the volatility of capital, making it more likely that

14The values are 0 and plus and minus two times the standard deviation of z.
15 In particular, α = 0.36, β = 0.99, and ρz = 0.95.
16 In a simulation of 10,000 observations the largest (smallest) value for capital is equal to 0.2258 (0.1996)

when σz = 0.007.
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capital reaches the undesirable part of the approximation. But the second-order perturba-

tion approximation changes when σz changes. In particular, it could be the case that the

undesirable decreasing part of the policy functions is pushed to the right as σz increases.

This would make it more diffi cult to reach this problematic part of the state space. This

turns out not to be the case, as is documented in Panel B of Figure 2. This panel plots

the policy functions when σz is equal to 0.2. For the high value of zt, the turning point

after which the function is decreasing in kt−1 is indeed pushed to the right. For the low

value of zt, however, the turning point is pushed to the left. In fact, the policy function

at the low productivity value is downward sloping for a large relevant range of values of

kt−1.17

Instability of second-order perturbation approximations. According to the second-

order perturbation approximation, the choice for capital and consumption are strictly pos-

itive at kt−1 = 0 . In fact, the chosen levels are quite high. For plausible values of σz

one would not get close to such low values of capital. But as σz increases, the volatility

increases and the ergodic set expands. Moreover, as σz increases, the policy function for

capital shifts down (keeping the value of z fixed) making low values of capital only more

likely.

Of course, it is not accurate at all to have positive capital and consumption choices

when kt−1 = 0.18 Although inaccurate, this property does make the perturbation approx-

imation more stable than the true solution. When using the second-order perturbation

approximation, one could even start at somewhat negative capital levels and the economy

will still revert back to the area around the steady state.19 We find this to be true for

17 In a simulation of 10,000 observations the largest (smallest) value for capital is equal to 6.8675 (0.0069)

when σz = 0.2. The standard deviation is equal to 0.44.
18According to the true rational expectations solution, both capital and consumption should be set equal

to 0 when the beginning-of-period capital stock equals 0; this is the only feasible choice.
19The second-order perturbation solution for kt does have a second fixed point, but the value of k at

this second fixed point is negative. If the capital stock would ever get below this negative value, then the

second-order perturbation solution would be explosive. Note that limkt−1−→∞ f̃2nd(kt−1, zt) = −∞. That

is, if the economy would start out at (or reach) a suffi ciently high capital stock, then the capital choice
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a wide range of parameter values, also when we move beyond the Brock-Mirman model

and consider other values for γ and allow for partial depreciation.20 Nevertheless, the

instability problem of the second-order perturbation approach is just around the corner.

This is discussed next.

The second-order perturbation approximation grossly violates the budget constraint for

low values of the beginning-of-period capital stock. But it is easy to obtain a second-order

perturbation approximation that exactly satisfies the budget constraint. In particular, one

could use the perturbation approximation for either capital or consumption and use the

budget constraint to solve for the other variable. The numerical approximation satisfies

the conditions in equation (28) and is, thus, a perturbation approximation.

Figure 3 plots the perturbation approximation for capital, f̃2nd (kt−1, 0), when con-

sumption is determined by the standard second-order perturbation approximation and

capital is solved from the budget constraint. The value of z is set equal to 0. The policy

function then gives the dynamics of the system if there are no shocks.21 The solid line

corresponds to the case when the parameters are the same as those used to create Panel

A of Figure 2.

Interestingly, the perturbation approximation is now monotonically increasing for all

positive values of kt−1. Thus, in terms of avoiding odd shapes, this alternative is an

improvement. In terms of stability it is not. The figure documents that the policy function

for capital has an additional positive-valued fixed point to the left of the steady state.22,23

could be so negative that the solution gets into the unstable region.
20We could find a case with a second positive-valued fixed point, but the value of k at this second fixed

point is very small and we had to raise the value of γ to 35. In this case the economy would diverge for

positive initial values when these initial values are below this second fixed point.
21This policy function is also indicative of the expected dynamics if there are shocks.
22 If γ is equal to 1, then this second fixed point of the perturbation approximation occurs at a value

of the capital stock that is only 10% of the steady state value. The figure also plots the second-order

perturbation approximation for the case when γ is equal to 10. In this case, the value of capital at the

second fixed point is substantially higher, namely around 30% of the steady state.
23 In fact, there is a third positive fixed point. But this fixed point is quite far away from the steady

state and is ignored in the text. But if the economy would start out at capital levels above this third fixed

point, then capital is expected to grow without bound.
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The time paths that start out or reach such low capital levels are diverging.

Summary for the neoclassical growth model. In addition to the cases discussed

here, we have considered the properties of second-order perturbation approximations for

several parameter values including those that allow for partial depreciation. We found that

odd shapes and instability only happen in unlikely cases. That is, in practice second-order

perturbation approximations of the neoclassical growth model do not exhibit the problems

we highlighted in the introduction. Nevertheless, we do not consider the analysis here very

comforting. It is true that one has to go outside the usual range of parameter values to

encounter problems. But we have shown that higher-order perturbation approximations do

have undesirable shapes and instability problems, even though the model is very simple

and has a log-linear solution. This brings up the question whether the problems will

occur for more standard parameter values when more interesting models are considered.

We document in the next two subsections that we have to answer this question in the

affi rmative.

3.3 Perturbation approximations and the matching model

In the previous section, we documented problematic features of perturbation approxima-

tions to the neoclassical growth model. But these problematic features are only relevant

when parameter values are such that the generated volatility is much larger than what

is observed for aggregate data. In this subsection, we consider the matching model. In

contrast to the results for the neoclassical growth model, we will show that the standard

second-order perturbation approximation generates explosive time paths when the model

is calibrated to generate a realistic amount of volatility. As discussed in section 2.2, the

productivity level is assumed to be a discrete-valued random variable that can take on

only two values. The main advantage of this assumption is that it allows us to portray the

reasons behind the problems of higher-order perturbation approximations with a simple

graphical analysis. The other advantage of this assumption is that it is easy to ensure

that the true model solution is always well-defined. In particular, we assume that the low

14



value of zt is such that profits are always positive.24

Parameter values for the matching model. We choose ζ and ρ̃z such that the

standard deviation of zt is equal to 0.007 and the autocorrelation of zt is equal to 0.95.25

These are typical values in the business cycle literature. We set the discount factor, β,

equal to 0.99 and the curvature parameter of the matching function, φ, equal to 0.5.26 The

values of the posting cost, ψ, the separation rate, ρn, and the scaling factor in the matching

function, φ0, are chosen such that the steady state values of the unemployment rate, the

number of matches per unemployed worker, and the number of matches per vacancy, are

equal to 5%, 0.7, and 0.7, respectively.27 The value of γ is set equal to 4.5. This value for

the coeffi cient of relative risk aversion is perhaps a bit higher than the most commonly

used values, but still a plausible value.28 We consider two values for the wage rate, namely

w = 0.96 and w = 0.973. When w is equal to 0.96, then the volatility of the employment

relative to the volatility of productivity is equal to 0.25, whereas the observed ratio in

the data is equal to 0.437.29 Thus, to match the observed relative volatility, the value of

w has to be increased. When w = 0.973, then the volatility of employment relative to

labor productivity (calculated using an accurate projection method) matches its observed

counterpart.30

24This condition is suffi cient to keep the problem well-defined, but it is not necessary. That is, we could

allow profits to be somewhat negative. To keep the problem well-defined it is important that λt > 0. As

long as expected future profits offset current losses, then λt would be positive.
25This means that ζ = 0.0224 and ρ̃z = 0.975.
26See Petrongolo and Pissarides (2001) for a motivation for the chosen value of φ.
27This implies that ψ = 0.5965, ρn = 0.368, and φ0 = 0.7.
28For lower values of γ, the second-order perturbation solution is still well-behaved when the volatility of

employment relative to the volatility of productivity is equal 0.437, i.e., the observed value. For somewhat

higher values of the target, the second-order perturbation approximation runs into the same problems as

those discussed here. For example, when γ = 3.5 and w = 0.976, then the relative volatility of employment

would be equal to 0.50 according to the accurate projection solution and the 2nd -order perturbation

approximation is no longer stable.
29The series are filtered using the HP filter. See Den Haan and Kaltenbrunner (2009) for further details

on the data used.
30See online appendix C.1 for a description of the projection method used.
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Second-order perturbation when w = 0.96. Panel A of Figure 4 plots the second-

order perturbation approximation for employment, nt, when the wage rate is equal to 0.96.

It also plots a very accurate solution obtained with a projection method, which we use

as a stand-in for the truth.31 When z takes on its low value (−ζ), then the perturbation

approximation has a second fixed point when n is (roughly) 0.83. With discrete support

this second fixed point is irrelevant in the sense that as long as the economy starts in the

ergodic region (also indicated in the figure), then the generated time path is always stable.

In particular, even if the economy is extremely unlucky and zt is always equal to −ζ, then

the economy will still converge towards a positive value for nt. Similarly, if zt is always

equal to +ζ, then the generated time path will remain well-behaved.

Moreover, the second-order perturbation approximation is a monotone increasing func-

tion in the ergodic set. In fact, the second-order perturbation approximation is very close

to the very accurate projection approximation in the ergodic set.

Even though the second-order perturbation approximation is doing very well, a small

change in the parameter values changes the picture completely. And the properties of the

model ask for such a change in the parameter values. As mentioned above, the standard

deviation of HP-filtered employment relative to the standard deviation of HP-filtered pro-

ductivity is still below its empirical counterpart. In Hagedorn and Manovskii (2008), it

is shown that this ratio increases when the average surplus decreases. To match observed

employment volatility we increase the value of the wage rate, w, from 0.96 to 0.973.

Second-order perturbation when w = 0.973. Panel B of Figure 4 plots the policy

function when w = 0.973. The small increase in the wage rate leads to a minor shift

in the policy function. This is true for the "true" policy function and the second-order

perturbation approximation. Nevertheless this minor shift has enormous consequences for

time paths simulated with the second-order perturbation approximation because the time

path for employment, nt, now explodes.32 The reason is that the second-order perturbation

approximation is now always below the 45o line when z takes on its low value. That is,

31See online appendix C.1 for details.
32 Instability already occurs for lower values of the wage rate, namely when it is close to 0.965.
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according to the perturbation approximation there is no longer a bounded ergodic set.

3.4 Perturbation approximations and the modified Deaton model

The modified Deaton model resembles the first model in two aspects. First, it is also a

relatively simple model. Second, the agent in the modified Deaton model also faces a trade-

off between the return on savings (or cost of borrowing) and consumption smoothing. The

model also differs in an important aspect from the first model. The volatility is much higher

at standard parameter values, since this is a model that describes individual behavior and

incorporates idiosyncratic uncertainty.

Parameter values for the modified Deaton model. We set r = 0.03, γ = 3, z̄ =

0.4, σz = 0.1, and β = 0.9. We choose a low value for β to ensure that agents are

suffi ciently impatient. If agents are not impatient, then penalty functions or borrowing

constraints would not matter. The standard deviation of idiosyncratic income, σz, is such

that a negative two-standard-deviations shock implies a level of income that is 20% below

its mean value. This is clearly not an excessively volatile process for idiosyncratic risk;

some papers in the literature even consider specifications for idiosyncratic risk that allow

individual income levels to be equal zero.33 Furthermore, we set η0 = 20, η1 = 0.04464,

and η2 = 0.00352. The values of η1 and η2 are such that the mean and standard deviation

of at are equal to the corresponding values in the model with the non-negativity constraint.

The value of η0 is modest in the sense that 19% of the times the agent chooses a negative

value for at, whereas this cannot happen in the original Deaton model. To get closer to

the Deaton model one would need a higher value for η0, that is, more curvature in the

penalty function.

Instability of second-order perturbation approximation. Figure 5 plots the "true"

policy function and the second-order perturbation approximation.34 Instead of plotting

33See, for example Krusell and Smith (1998).
34The "true" policy function is represented by a very accurate solution obtained with a projection

procedure. See online appendix C.2 for details.
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the savings choice, at, as a function of the state variable, cash on hand, xt, we plot the

expected value of next-period’s cash on hand, E[xt+1|xt], which is equal to at+Et [ezt+1 ].

The reason is that the graph of the relationship between (the expected value of) xt+1 as

a function of xt directly reveals whether the dynamics are stable or not.

As documented in the figure, the true policy function is convex and monotonically

increasing for the values of xt observed in the cross-section. Interestingly, the same is

true for the second-order perturbation approximation in the relevant part of the state

space. The second-order perturbation approximation is unstable, however, because there

is a second intersection with the 45o-line above the true steady state. If this intersection

is too close to the true steady state, then simulated time paths will eventually take on

values to the right of the second intersection at which point the economy is expected to

diverge.35 This turns out to be the case for the parameter values used here.

Instability of higher-order perturbation approximations. The question arises

whether one can avoid or at least reduce the severity of the instability of the second-

order perturbation approximation by going to higher-order approximations. To shed light

on this question, we plot the third, fourth, and fifth-order perturbation approximations

for the modified Deaton model in Figure 6.

As predicted by theory, the approximation around the steady state improves if one

increases the order of the approximation, although the scale of the figure is such that this

is not very clear. For our purpose, the global fit is more interesting. The figure documents

that the third-order perturbation approximation, like the second-order approximation, has

a second intersection with the 45o-line and that this undesirable intersection is closer to the

steady state than the undesirable additional intersection for the second-order perturbation

approximation. Consistent with this fact, we find that series generated with the third-

order perturbation approximation start an explosive trajectory faster than series generated

with the second-order perturbation approximation.

35Being to the right of the intersection is not suffi cient for the asset holdings of the agent to diverge. If

the agent receives suffi ciently soon suffi ciently low values for zt, then the asset holdings would drop back

into the stable region.
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The fourth and fifth-order perturbation approximations are stable, but the stability

comes at the cost of having a sharply decreasing policy function in some part of the state

space. All polynomial approximations display oscillations and the higher the order of the

polynomial the more oscillations. The problem with perturbation is that one cannot con-

trol where such undesirable oscillations occur. The histogram below the graph displays

the observed distribution of the state variable according to the accurate projection ap-

proximation. It documents that the decreasing part occurs in a very relevant part of the

state space for the fifth-order approximation.

4 Stable nonlinear perturbation-based approximations

In this section, we describe two procedures– both based on perturbation analysis– that

generate stable time paths. The first procedure solves for the period-t decisions using

(i) the exact nonlinear equations of the model for periods t through t + J and (ii) the

first-order perturbation approximation to describe the behavior in period t + J .36 The

second procedure is perturbation with pruning. The pruning procedure resembles the

standard perturbation procedure in that it starts out with a first-order approximation and

sequentially adds higher-order monomial terms. In contrast to the standard perturbation

approach, the pruning procedure also adds state variables at each step.

4.1 Perturbation-plus procedure

To explain the procedure, it is more convenient to write the generic description of a DSGE

model using only the state variables. That is, we replace equation (23) with

0 = E [H(x+1, x, x−1, z+1, z)] . (29)

The objective is to determine x given values for x−1 and z. There are two reasons why

equation (29) is not a standard nonlinear equation in x given x−1 and z. First, the

equation contains an integral over the realizations of z+1. Second, x+1 is also unknown.

36Any numerical approximation could be used. Thus, this procedure can be used to improve any nu-

merical approximation.
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Leading equation (29) with one period gives an extra equation, but also introduces an

extra variable, namely x+2. The first issue can be dealt with using numerical integration

procedures. To deal with the second issue we replace x+j by the first-order perturbation

approximation, f̃1st (x+j−1, z+j). If we use the one-step ahead perturbation-plus procedure,

then j = 1 and x+1 is replaced by f̃1st (x, z+1). Thus, we solve x from

0 = Ẽ
[
H(f̃1st (x, z+1), x, x−1, z+1, z

]
, (30)

where Ẽ denotes that the integral is calculated using a numerical integration procedure.

We denote the value of x that solves equation (30) by f̂+1(x−1, z), where the subscript

indicates that x is solved using the true model equations for 1 period. There may be no

analytical solution for f̂+1(x−1, z) in which case f̂+1(x−1, z) is only implicitly defined by

equation (30). In this case, one has to use a nonlinear equation solver to solve for the

value of f̂+1(x−1, z).

To generate a time path for xt one would simply iterate on f̂+1(xt−1, zt). Note that

f̂+1(xt−1, zt) is constructed under the assumption that next period’s value for x is cal-

culated using f̃1st (xt, zt+1). As next period comes along, however, xt+1 is not calculated

using the first-order perturbation approximation, f̃1st (xt, zt+1), but is calculated using

f̂+1(xt, zt+1).

The two-step ahead modification, x = f̂+2(x−1, z), is the value of x that is the solution

to

0 = Ẽ
[
H(f̂+1(x, z+1), x, x−1, z+1, z

]
. (31)

That is, the value of x is based on (i) the exact equations of the model for this period

(ii) the exact equations of the model for the next period, and (iii) the assumption that

the behavior in the period after the next period is based on the first-order perturbation

approximation.37

37The perturbation-plus procedure is related to the extended-path method of Fair and Taylor (1983)

and Gagnon (1990). This procedure also solves for period-t variables by looking a number of periods

into the future. The difference is that the perturbation-plus procedure calculates conditional expectations

explicitly, namely by using numerical integration procedures, and it closes the system by using the first-

order perturbation solution to describe the behavior in the last period, whereas the extended-path method
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In theory, one could iterate on this process and construct the J-step ahead modification,

x = f̂+J (x−1, z). As J approaches infinity, then x and x+1 are based on the same policy

function, that is, one has a rational expectations equilibrium.

The procedure quickly becomes expensive as J increases, especially when there is no

analytical expression for f̂+J (x−1, z). Even in a model as simple as the neoclassical growth

model, there is no analytical expression for the value of x that solves equation (30). As

discussed in online appendix B.1, there is a slight modification of the algorithm that is

much faster and we found the numerical results to be very similar.38

Discussion. The perturbation-plus procedure is quite easy to program. Relative to

implementing a perturbation procedure, no new tools are needed except a numerical in-

tegration (quadrature) procedure. But this is not diffi cult; using a quadrature technique

is like programming the expectation of a random variable with discrete support. The

perturbation-plus procedure is easier to implement than projection methods because it

does not require the user to construct a grid. The user also does not have to worry about

what class of approximating functions to use (Chebyshev polynomials, splines, etc.). Nev-

ertheless, the procedure has several of the benefits of a projection procedure, at least for

suffi ciently high J , because it uses the exact equations of the model and it explicitly ap-

proximates the conditional expectation with an accurate numerical integration procedure.

The disadvantage of this procedure is that the problem quickly gets very expensive as

J increases. That is, in practice one can only use this procedure if the appropriate value

for J is low. Whether an accurate solution can be obtained with a low value for J depends

on the model at hand and in particular on the value of β. In section 5, we discuss an

example in which the first-order as well as the second-order perturbation approximations

are not accurate, but the one-step ahead perturbation-plus approximation is accurate.

closes the system using terminal conditions for expectations or variables.
38Our finding that the results are similar could very well depend on the problem at hand and not carry

over to other models.

21



4.2 Pruning

In this section, we describe the pruning procedure. Our procedure is based on Kim, Kim,

Schaumburg, and Sims (2008), but– as discussed below– we deviate from their procedure

in one small aspect.39 We follow Collard and Juillard (2001) and define the stochastic

steady state as the fixed point of the regular perturbation solution– with a possible cor-

rection for uncertainty– when zt is equal to its steady state value. That is, x̄2nd (σ) is the

solution to40,41

x̄2nd = f̃2nd (x̄2nd , z̄;σ). (32)

From now on we subtract the non-stochastic steady state from the state variables in the

formulation of the perturbation approximation. To avoid introducing new notation, we

will denote this approximation also with f̃2nd (·).

This second-order approximation can always be written as follows:42

f̃2nd (xt−1 − x̄2nd , zt − z̄;σ)

=

f̃
(1)

2nd
(xt−1 − x̄2nd , zt − z̄;σ) + f̃

(2)

2nd
(xt−1 − x̄2nd , zt − z̄;σ),

(33)

where f̃ (1)

2nd
(·) is the part of f̃2nd (·) with the linear terms, and f̃ (2)

2nd
(·) is the part of f̃2nd (·)

with the second-order terms.

The pruning procedure consists of the following steps.

1. Simulate x(1)
t using

x
(1)
t − x̄2nd = f̃

(1)

2nd
(x

(1)
t−1 − x̄2nd , zt − z̄;σ). (34)

39Online appendix A gives a more detailed discussion and also discusses the differences with the procedure

of Lombardo (2010).
40 In the remainder of the paper we will write x̄2n d instead of x̄2n d (σ), but the reader should remember

that a steady state indexed by an ith subscript indicates a stochastic steady state, which depends on σ.
41The non-stochastic steady state is the fixed point when σ = 0 using the true rational expectations

solution, i.e., the value of x that solves x = f(x, z̄; 0), which is the same as the value for x that solves

H(x, x, x, z̄, z̄) = 0.
42For second-order perturbation, the value of σ at most affects the stochastic steady state. So strictly

speaking we would not need σ as a separate argument for any of the functions in equation (33). For

higher-order approximations, σ is needed as a separate argument.
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2. Simulate xt = x
(2)
t using

x
(2)
t − x̄2nd = (35)

f̃
(1)

2nd
(x

(2)
t−1 − x̄2nd , zt − z̄;σ) + f̃

(2)

2nd
(x

(1)
t−1 − x̄2nd , zt − z̄;σ),

where the values of zt used are identical to those used in step 1. The process

f̃
(2)

2nd
(x

(1)
t−1− x̄2nd , zt− z̄;σ) is stationary because both x(1)

t and zt are stationary. The

process f̃ (1)

2nd
(x

(2)
t−1−x̄2nd , zt−z̄;σ) is stationary unless the Blanchard-Kahn conditions

are not satisfied. Consequently, the simulated values of xt are stationary as well.

The nth-order pruned perturbation approximation, xt = x
(n)
t , is generated using the

following iterative scheme:

x
(j)
t − x̄nth =

j∑
i=1

f̃
(i)

nth
(x

(j−i+1)
t−1 − x̄nth , zt − z̄;σ) for j = 1, · · · , n. (36)

For n ≥ 2, there is an alternative. First calculate x(1)
t and x(2)

t using equation (36). Next

calculate the nth-order approximation using

x
(j)
t − x̄nth =

f̃
(1)

nth
(x

(j)
t−1 − x̄nth , zt − z̄;σ)

+
∑j

i=2 f̃
(i)

nth
(x

(j−1)
t−1 − x̄nth , zt − z̄;σ)

for j = 3, · · · , n. (37)

The formulation in equation (37) uses the highest available (stationary) variable. Even

though the specification in equation (36) does not use this possible update, it is also a

nth-order approximation since x(j)
t is used in the (n− j + 1)th-order monomials.

There is a small difference between the procedure described here and the way pruning

is implemented in Kim, Kim, Schaumburg, and Sims (2008). In each step of the nth-

order pruned perturbation procedure, we use the coeffi cients of the nth-order perturbation

approximation. For example, to generate x(1)
t we use the linear part of the nth-order

perturbation approximation whereas Kim, Kim, Schaumburg, and Sims (2008) use the

first-order perturbation approximation. As is documented in online appendix A, both

approximations are nth-order approximations.

The motivation for this modification is straightforward. One reason to use higher-

order perturbation approximations is that they allow uncertainty to affect the coeffi cients

23



of the approximation. For example, the constant term in the second-order perturbation

approximation depends in general on the amount of uncertainty.43 It is this dependence of

the constant term on uncertainty that allows the second-order perturbation approximation

to capture the impact of uncertainty on, for example, average savings behavior. Our

version of the pruning procedure ensures that this dependence is not lost in the pruning

procedure. For example, the stochastic steady state of our pruned perturbation solution

is identical to the stochastic steady state of the underlying regular perturbation solution.

This is not the case for the pruning procedure of Kim, Kim, Schaumburg, and Sims

(2008).44,45

The pruned perturbation approximation is a recursive function just like the regular

perturbation approximation, but of a larger (and potentially much larger) set of variables.

It is a correspondence in the original state variables, x−1 and z. To illustrate this aspect

of the pruned perturbation approximation, we use the neoclassical growth model. We

assume that the law of motion for productivity, zt, is equal to the first-order Markov

process described in section 2.2. The advantage of this process is that zt takes on only

two values, which makes it possible to graphically document whether the policy function

is close to a function of the original state variables or not.

To see whether the pruned perturbation approximation is close to a function of the

original state variables we do the following. Using the pruned second-order perturbation

approximation, we generate a long time series for capital, k(2)
t .46 Next, we plot the change

43The stochastic steady state of the perturbation approximation is not equal to the non-stochastic steady

state exactly because of this dependence.
44 In generating x(1)t , Kim, Kim, Schaumburg, and Sims (2008) use the first-order perturbation solution,

not the linear part of the higher-order pertubation solution. Since x(1)t is simply the first-order perturbation

solution, its stochastic steady state is the non-stochastic steady state, not the stochastic steady state of

the underlying perturbation solution. Since x(1)t is used as input in subsequent steps, the stochastic steady

state of series generated in subsequent steps is also affected.
45As discussed in online appendix A, both procedures generate valid nth -order perturbation approxima-

tions. The reason is these are local approximations, i.e., when σ −→ 0, and the stochastic steady state

and the non-stochastic steady state converge towards each other as σ −→ 0.
46The simulation is based on the following parameter values: α = 0.36, β = 0.99, γ = 3, δ = 0.025,

ρ̃z = 0.975, and ζ = 0.6405.
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in capital, k(2)
t − k

(2)
t−1, as a function of the state variable, k

(2)
t−1. One set of numbers will

be for the high value of zt and one set for the low value of zt. The results are reported in

Figure 7. The figure clearly illustrates that the pruned perturbation approximation does

not come close to being a function of the original state variables.47

5 Accuracy of the stable perturbation-based procedures

In this section, we evaluate the accuracy of the pruned perturbation and the perturbation-

plus approximations. For the Brock-Mirman model, we compare a time path of the approx-

imation with the corresponding time path of the true solution. For the other models, we

use a time path generated by a very accurate projection method instead of the (unknown)

true solution.48 The length of the time path, T , is set equal to 10,000.

The distance between a period-t variable generated with an approximation and the

corresponding "true" value could be measured as the absolute percentage error. This will

not make sense if– as is the case in several of our models– variables take on values that

are close to zero. An alternative would be to scale the (absolute) difference by the time

series average of the true series. But this measure would overestimate the seriousness of

deviations if variables take on values that are bigger than multiple times this mean and we

encounter observations where the true value is more than 20 times the mean. For those

type of observations, the regular percentage error would be more appropriate.

Therefore, we define the period-t error as

et = min

{∣∣∣∣ x̃t − xtxt

∣∣∣∣ , ∣∣∣∣ x̃t − xtx̄T

∣∣∣∣} , (38)

where x̃t is the realization according to the approximation, xt the realization according to

47The value of ζ used to generate the graph is equal to 0.6405, which means that the amount of uncer-

tainty is high for a macroeconomic model. But it does not make sense to analyze this issue for standard

parameter values, since for standard parameter values the solution to this very simple model is approx-

imated well with first-order perturbation and there would be no reason to consider higher-order pruned

perturbation. Den Haan and De Wind (2009) illustrate this aspect of pruned perturbation approximations

using the modified Deaton model.
48That the projection method generates very accurate solutions is established in online appendix C.
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the true solution (or very accurate projection method solution), and x̄T is the mean value

of xt. We report both the maximum and the mean of et. For all three models, we report

only the results for the state variable. The errors for consumption are somewhat smaller,

but the conclusions drawn here do not depend on the variable considered.

5.1 Accuracy of approximations to the Brock-Mirman model

We consider two values for σz, namely σz = 0.1 and σz = 0.2. Table 1 reports information

about the approximation errors and table 2 reports summary statistics for the behavior of

capital according to the different policy rules.49 The following observations can be made.

First, the first-order perturbation approximation performs very poorly. This approxi-

mation generates large negative values for the capital stock. Moreover, the highest obser-

vation for capital that is generated by the first-order perturbation approximations is more

than 50% below the correct highest observation value when σz = 0.1 and more than 87%

below the correct peak when σz = 0.2. Not surprisingly, the accuracy measures are very

poor at these high values for σz. The first-order approximation would do fine for values of

σz that are typical for representative-agent models. The point here is to show that even

models with simple nonlinearities eventually get into serious problems if the amount of

uncertainty is increased.

Second, the pruned second-order approximation performs worse than the regular second-

order perturbation approximation. Although, the pruned second-order approximation typ-

ically does substantially better than first-order perturbation, its maximum error is higher

when σz = 0.2. Whereas the problem of first-order perturbation is that it generates val-

ues for capital that are way too low, the problem for both the regular and the pruned

second-order perturbation approximation is that the lowest values are substantially above

the true minimum value. The gap is roughly equal to one quarter of the mean capital

49The minimum values obtained by the second-order perturbation approximations are the same when

σ = 0.1 and when σ = 0.2. The reason is the following. First, the correction term for uncertainty is

almost zero. Second, when z is low then the (quadratic) policy function is (i) quite flat and (ii) close to

the minimum. This means that the chosen values of k hoover around the same value until a suffi ciently

high value for z pushes the economy out of this area.
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stock.

Third, our proposed alternative does substantially better than the second-order per-

turbation approximations, both in terms of having better accuracy measures and in terms

of generating summary statistics that are closer to the truth. For the two-step ahead

perturbation-plus approximation, the maximum errors are equal to 5.2% and 8.1% when

σz is equal to 0.1 and 0.2, respectively. Although nontrivial numbers, they are substan-

tially lower than for the second-order pruned approximation for which the corresponding

errors are 47.9% and 193.8%.

Figure 8 plots that part of the sample where the largest errors are obtained by the

perturbation-plus approximations when σz = 0.2. This truly is an usual period: the true

value of kt takes on a value that is more than twenty times the sample average. The two-

step ahead perturbation-plus approximation does a good job following the true time path,

but does not reach the same peak. It reaches a maximum value of 6.3 whereas the true

maximum is equal to 6.9. The maximum reached by second-order pruned perturbation is

only 2.2. The three-step ahead perturbation-plus approximation does even better than the

two-step ahead approximation. For example, the maximum reached during this enormous

upswing is equal to 6.68, only 2.7% below the true maximum (which is 20 times above the

average value). The problem is that the three-step ahead perturbation-plus approximation

is quite expensive to run.50

The figure documents that the first-order perturbation solution grossly and persistently

underestimates the upswing of capital during this period. Since this approximation is used

to describe future behavior in the perturbation-plus procedure it is not surprising that the

perturbation plus procedure also underpredicts capital. In fact, it is quite amazing that

most of the gap between the true solution and the first-order perturbation solution can be

corrected by using the actual equations of the model for only two periods and using this

50With 5 quadrature nodes it takes roughly 0.021 seconds per observation for 1-step ahead perturbation

plus, 0.24 seconds per observation for 2-step ahead perturbation plus, and 11 seconds per observation for

3-step ahead perturbation plus. The processor used is an Intel (R) Core(TM) i7-2600 CPU @ 3.40 GHz.

Computing times for the alternatives are much smaller. For example, second-order pruned perturbation

takes less than 0.0001 seconds per observation.
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not so accurate first-order perturbation approximation to close the system.

5.2 Accuracy of approximations to the matching model

As in section 3.3, we consider two values for the wage rate, namely w = 0.96 and w = 0.973.

At the lower value of w the regular second-order perturbation approximation is stable and

at the higher value of w it is not. Accuracy measures and summary statistics for the

different numerical approximations are given in tables 1 and 2, respectively. The following

observations can be made.

First, the error measures are much smaller than those reported for the previous model.

The reason is that the variance of the driving process is much smaller. By construction, the

model generates plausible employment volatility (relative to labor productivity) when w =

0.973. In particular, the employment rate fluctuates between 89.8% and 96.4% according

to the "true" solution. The model generates too little volatility in the employment rate

when w = 0.96.

Second, first-order perturbation again performs very poorly. When w = 0.973, the

first-order perturbation approximation predicts that the mean employment rate is equal

to 94.9% while in fact it should be 93.1%. Making on average a mistake of 1.8 percentage

point when the range of generated values is only 6.6 percentage points is very troubling.

Third, when w = 0.973 the regular second-order perturbation approximation explodes

and is obviously outperformed by pruned perturbation. When w = 0.96 and the regular

second-order just does not explode, it outperforms pruned perturbation by far. In fact, it

performs very well.

Fourth, the results for second-order pruned perturbation are substantially better than

those for first-order perturbation. Nevertheless, the time paths generated by second-

order pruned perturbation are inaccurate in some important dimensions. In particular, it

underestimates the depth of recessions. Consider the case when w = 0.973. The worst that

can happen according to the second-order pruned perturbation approximation is a drop in

the employment rate to 91.4%, while the actual minimum is 89.8%. In contrast, second-

order pruned perturbation predicts the maximum value quite well. It predicts a peak of
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96.35% whereas our accurate projection method predicts a peak of 96.44%. Consistent

with these observations, second-order pruned perturbation underestimates the standard

deviation of employment with 35%.

Fifth, the perturbation-plus procedure does very poorly unless the number of forward

looking steps is very high. For the Brock-Mirman model, we found that even the one-step

ahead perturbation-plus procedure delivered a substantial improvement over first-order

perturbation. For this model, the one-step ahead perturbation-plus procedure leads to only

a small improvement. As documented in table 1, even the nine-step ahead perturbation-

plus procedure performs worse than the second-order pruned perturbation approximations.

To get performance that is comparable to that of the second-order pruned perturbation

approximation, the number of forward looking steps has to be at least 15.51,52

The perturbation-plus procedure does much better if we do not use the first-order

perturbation approximation to close the system, but use instead a policy function that

is linear in n−1 but for which the coeffi cients depend on z. That is, for each of the two

values of z we use a separate linear policy function. In fact, even the one-step ahead

perturbation-plus procedure outperforms the second-order pruned perturbation by far.

The two linear functions were obtained with a projection method. It is not diffi cult to

obtain these two linear functions and one always achieves a stunning improvement as long

as one conditions on the value of z. But we do not want to pursue this modification, since

the idea of the perturbation-plus procedure is that one does not to have to worry about

setting up a grid, which is part of the projection method procedure.

51Even with the simplification discussed in online appendix B.2, it takes 102 seconds per observation to

run 15-step ahead perturbation plus. The processor used is an Intel (R) Core(TM) i7-2600 CPU @ 3.40

GHz.
52We also considered some cases when z had continuous support. Interestingly, one-step ahead per-

turbation plus then substantially improves upon first-order perturbation and also does much better than

the two second-order perturbation approximations. The advantage of discrete support for second-order

perturbation approximations is that it limits the maximum deviations from the steady state, which is

useful given that the nonlinear dependence of n on z is not captured well with a second-order perturbation

approximation.
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5.3 Accuracy of approximations to the modified Deaton model

As documented in table 1, there are substantial differences between the time paths gen-

erated by the first-order perturbation approximation and the time path generated by the

accurate projection method. For example, according to the accurate projection approx-

imation, asset holdings range between −0.094 and 0.848, and mean asset holdings are

equal to 0.085. In contrast, according to the first-order perturbation approximation, asset

holdings range between −0.184 and 0.344 and the mean is equal to 0.029. The first-order

perturbation approximation has a maximum error of 137% and an average error of 44%.

Improvements are obtained by the nonlinear approximations, except by the regular

second-order perturbation approximation, because it generates a time path that is not

stable. The maximum error of the second-order pruned perturbation approximation is

equal to 127%, only a slight improvement over the one obtained by the first-order per-

turbation approximation. But the average error is substantially less, namely 12.2%. The

average error of the two-step ahead perturbation-plus procedure is slightly smaller than

the one for second-order pruning, but the maximum error is substantially smaller, namely

64.6%.

Table 2 documents that there are also substantial differences in the properties of the

generated time paths. The two-step ahead perturbation-plus procedure predicts a standard

deviation that is 10% below the true value and second-order pruning underpredicts the

standard deviation by 16%. The approximations have most diffi culty in following the

true time path in extreme situations. Interestingly, the perturbation-plus procedure has

problems with the peaks and pruning has problems with the troughs.

Panel A of Figure 9 plots that part of the generated time path where the perturbation-

plus procedure makes the biggest error and Panel B plots that part where pruning makes

the biggest error. First consider Panel A. The figure makes clear that the perturbation-

plus procedure is not as bad as the results reported above indicate. At the peak, the

two-step ahead perturbation-plus approximation underestimates the maximum achieved

level of asset holdings with 16%. Given that the true maximum is ten times as big as

the mean asset holdings, this error is not that worrisome. In particular, the perturbation-
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plus approximation also predicts an enormous increase and some time before and some

time after this unusual situation the perturbation-plus procedure does track the accurate

time path reasonably well. The maximum error for the two-step ahead perturbation-plus

approximation is equal to 64%. Interestingly, the maximum error is not obtained at the

peak but just after the peak, when observations have fallen back to normal levels.

Now turn to Panel B of Figure 9 that plots that part of the time path during which

the second-order pruning procedure makes the biggest error. This occurs during a serious

downturn. Similar to the case of panel A, the pruned perturbation approximation follows

the accurate time path quite closely before and after this extreme period. The error

made by second-order pruning may be a bit more serious than the error made by the

perturbation-plus approximation in the top panel. First, the trough highlighted in Panel

B is much closer to the mean level of asset holdings than the peak in Panel A. Moreover,

the generated pattern is actually a bit different as well. After the time path generated with

pruned perturbation has reached its minimum value in period 4362, it starts an upward

movement with only a minor downward blip, whereas the accurate time path reaches a

considerably lower minimum several periods later.

6 Concluding comments

In this paper, we have focused on nontrivial numerical problems. In particular, we have

looked at models for which regular second-order perturbation generates time paths that

reach that part of the state space where the derivative of the second-order approximation

has the wrong sign and we have looked at models where the parameter values are outside

the set that ensure stability.

The first-order perturbation approximation avoids both problems, but these are mod-

els for which nonlinearities matter. The two perturbation-based alternatives to regular

perturbation approximations generate stable time paths and incorporate nonlinearities.

These methods can deliver substantial improvements over linear approximations. In the

examples considered in this paper, the proposed alternatives provide a good qualitative

insight in how the true time path differs from the path generated by first-order pertur-
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bation. In most cases, however, there are important quantitative differences between

the time paths generated by the approximations and the accurate solution method. The

two exceptions are the three-step ahead perturbation-plus procedure when applied to the

Brock-Mirman (with high variance) and the modified Deaton model.

Thus, if the user is interested in precise quantitative properties of the model, then it is

important to evaluate the quality of the approximation with an accuracy test. It is always

a good idea to do this, but this is especially the case when solving models that are such

that regular perturbation approximations generate unstable time paths.

To conclude, we would like to point out that there is nothing in the perturbation plus

procedure that requires future behavior to be described by the first-order perturbation

approximation. We used this approximation as input, because we were mainly interested

to see whether small modifications of the (simple) first-order perturbation solution could

lead to substantial improvements. But our procedure can be applied to any numerical

approximation, independent of the method used to obtain it.

The one-step ahead procedure is related to the "dynamic Euler equation" accuracy

test used in Den Haan (2010). The idea is the following. Data generated by our one-

period ahead modification are more accurate than data generated directly by the input

approximation, which our one-period ahead modification only uses indirectly via next

period’s behavior. This gap between the two data series provides an accuracy measure. If

the approximation is accurate, then the two data series will be close to each other. That is,

if a numerical approximation is accurate, then applying our one-step ahead modification

should result in a time series that is virtually identical to the time series simply generated

by the numerical approximation itself. Note that this would happen if the true rational

expectations solution would be used to describe next period’s behavior.

Acknowledgement

We would like to thank Fabio Canova, Ken Judd, Michel Juillard, Ondra Kamenik,

Giovanni Lombardo, Tarik Ocaktan, the editor Paul Klein, and two anonymous referees for

useful comments. Den Haan thanks the Netherlands Organisation for Scientific Research

(NWO) for financial support.

32



References

Andreasen, M. M. (2012): “Non-Linear DSGE Models, The Central Difference Kalman

Filter,”Journal of Applied Econometrics, forthcoming.

Collard, F., and M. Juillard (2001): “Accuracy of Stochastic Perturbation Methods:

The Case of Asset Pricing Models,” Journal of Economic Dynamics and Control, 25,

979—999.

De Wind, J. (2008): “Punishment Functions,” Unpublished manuscript, University of

Amsterdam.

Deaton, A. (1991): “Saving and Liquidity Constraints,”Econometrica, 59, 1221—1248.

Den Haan, W. J. (2010): “Comparison of Solutions to the Incomplete Markets Model

with Aggregate Uncertainty,”Journal of Economic Dynamics and Control, 34, 4—27.

Den Haan, W. J., and J. De Wind (2009): “How Well-Behaved are Higher-Order

Perturbation Solutions?,”DNB Working Paper No. 240.

Den Haan, W. J., and G. Kaltenbrunner (2009): “Anticipated Growth and Business

Cycles in Matching Models,”Journal of Monetary Economics, 56, 309—327.

Doh, T. (2011): “Yield Curve in an Estimated Nonlinear Macro Model,” Journal of

Economic Dynamics and Control, 35, 1229—1244.

Fahr, S., and F. Smets (2010): “Downward Wage Rigidities and Optimal Monetary

Policy in a Monetary Union,”Scandinavian Journal Of Economics, 112, 812—840.

Fair, R. C., and J. B. Taylor (1983): “Solution and Maximum Likelihood Estimation

of Dynamic Nonlinear Rational Expectations Models,”Econometrica, 51, 1169—1185.

Fernández-Villaverde, J., P. Guerrón-Quintana, J. F. Rubio-Ramírez, and

M. Uribe (2011): “Risk Matters: The Real Effects of Volatility Shock,” American

Economic Review, 101, 2530—2561.

33



Gagnon, J. E. (1990): “Solving the Stochastic Growth Model by Deterministic Extended

Path,”Journal of Business and Economic Statistics, 8, 35—36.

Hagedorn, M., and I. Manovskii (2008): “The Cyclical Behavior of Equilibrium Un-

employment and Vacancies Revisited,”American Economic Review, 98, 1692—1706.

Hall, R. E. (2005): “Employment Fluctuations with Equilibrium Wage Stickiness,”

American Economic Review, 72, 50—65.

Judd, K. L. (1998): Numerical Methods in Economics. The MIT Press, Cambridge,

Massachusetts.

Kim, J., S. Kim, E. Schaumburg, and C. A. Sims (2008): “Calculating and Us-

ing Second-Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models,”

Journal of Economic Dynamics and Control, 32, 3397—3414.

Krusell, P., and A. A. Smith, Jr. (1998): “Income and Wealth Heterogeneity in the

Macroeconomy,”Journal of Political Economy, 106, 867—896.

Lombardo, G. (2010): “Approximating DSGE Models by Series Expansions,”Unpub-

lished manuscript, European Central Bank.

Petrongolo, B., and C. Pissarides (2001): “Looking Into the Black Box: A Survey

of the Matching Function,”Journal of Economic Literature, 39, 390—431.

34



Figure 1: Perturbation approximations and instability
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Notes: This figure plots the function f(x−1) described in section 1 and its second-order
Taylor-series approximation.



Figure 2: 2nd-order perturbation approximations for Brock-Mirman model

A: Approximation for kt = k(kt−1, zt); σz = 0.007
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B: Approximation for kt = k(kt−1, zt); σz = 0.2
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Notes: This figure plots the 2nd-order perturbation approximations for the Brock-Mirman
model in levels (not in logarithms) for different values of z.



Figure 3: A 2nd-order perturbation approximation for neoclassical growth model
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Notes: Capital is solved from the true budget constraint using the perturbation approxi-
mation for consumption. When γ = 1, then the model is the Brock-Mirman model.



Figure 4: "Truth" and 2nd-order perturbation approximation for matching model

A: w = 0.96.
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B: w = 0.973.
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Notes: The point of this figure is to show that the second-order perturbation solution
when z = −ζ does not have a fixed point unless w is suffi ciently low (as in panel A).



Figure 5: 2nd-order perturbation approximations for the Deaton model
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Notes: This figure shows that the second-order perturbation approximation for the policy
function of the Deaton model is not globally stable. The graph plots E[xt+1|xt] as a
function of xt, where xt is cash on hand (the only state variable of the model). Cash on
hand is equal to lagged asset holdings plus current-period income. The bottom panel gives
the distribution for xt according to the "truth".



Figure 6: Higher-order perturbation and the modified Deaton model
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Figure 7: Data simulated with 2nd-order pruned perturbation approximation;
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Figure 8: Capital stock time paths for the Brock-Mirman model

7790 7795 7800 7805 7810 7815 7820

0

1

2

3

4

5

6

7

time

k
t

1st−order perturbation

perturbation plus
(2−step)

2nd−order perturbation (pruned)

truth

2nd−order perturbation

Notes: This graphs plots the different approximations in that part of the generated time
series where the 2-step ahead perturbation-plus approximation attains its largest error.



Figure 9: Asset holding time paths for the modified Deaton model

A: When two-step ahead perturbation plus attains largest error
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Table 1: Differences (in %) between approximations and "truth"

Brock-Mirman (capital stock)

σz = 0.1 σz = 0.2
max mean max mean

perturbation + 1 16.7 2.7 25.3 5.4
perturbation + 2 5.2 1.0 8.1 1.9
1st-order pert. 76.1 8.0 142.8 19.2
2nd-order pert. 31.0 1.9 76.4 7.9
2nd-order pruning 47.9 2.0 193.8 8.8

matching (employment)

w = 0.96 w = 0.97
max mean max mean

perturbation + 1 0.97 0.67 3.09 1.82
perturbation + 1* 0.30 0.12 0.44 0.13
perturbation + 9** 0.66 0.45 2.38 1.38
1st-order pert. 1.02 0.69 3.20 1.87
2nd-order pert. 0.06 0.02 ∞ ∞
2nd-order pruning 0.36 0.22 1.79 0.94

modified Deaton (asset holdings)

max mean
perturbation + 1 97.9 22.1
perturbation + 2 64.6 11.1
1st-order pert. 136.9 44.4
2nd-order pert. ∞ ∞
2nd-order pruning 127.7 12.2

Notes: "truth" refers to the true policy rule for the Brock-Mirman model and to a very
accurate projection method for the other two models. The * indicates that two separate
linear rules are used for the two values of z and ** indicates that the approximation is
calculated as described in appendix B.1. Results are based on a time path of 10,000
observations.



Table 2: Model properties accordng to approximations and "truth"

Brock-Mirman (capital stock)
σz = 0.1 σz = 0.2

E[k] σk min max E[k] σk min max
truth 0.227 0.123 0.037 1.170 0.334 0.444 0.007 6.868
perturbation + 1 0.218 0.114 0.010 0.983 0.296 0.360 0.000 5.158
perturbation + 2 0.224 0.120 0.029 1.110 0.322 0.417 0.004 6.312
1st-order pert. 0.200 0.099 -0.136 0.552 0.201 0.198 -0.471 0.905
2nd-order pert. 0.223 0.107 0.089 0.838 0.283 0.232 0.089 1.804
2nd-order pruning 0.225 0.108 0.010 0.865 0.299 0.253 0.100 2.155

matching (employment)
w = 0.96 w = 0.97

E[n] σn min max E[n] σn min max
"truth" 0.943 0.0175 0.925 0.961 0.931 0.0315 0.898 0.964
perturbation + 1 0.949 0.0151 0.934 0.965 0.948 0.0218 0.927 0.972
perturbation + 1* 0.941 0.0178 0.924 0.961 0.932 0.0318 0.899 0.966
perturbation + 9** 0.947 0.0157 0.931 0.964 0.944 0.0236 0.920 0.969
1st-order pert. 0.949 0.0151 0.934 0.966 0.949 0.0217 0.928 0.972
2nd-order pert. 0.942 0.0176 0.925 0.961 ∞ ∞ ∞ ∞
2nd-order pruning 0.944 0.0155 0.928 0.961 0.937 0.0228 0.915 0.964

modified Deaton (asset holdings)
E[a] σa min max

"truth" 0.085 0.098 -0.094 0.848
perturbation + 1 0.057 0.080 -0.101 0.583
perturbation + 2 0.071 0.088 -0.097 0.710
1st-order pert. 0.029 0.070 -0.184 0.344
2nd-order pert. ∞ ∞ − ∞
2nd-order pruning 0.079 0.082 -0.043 0.829

Notes: "truth" refers to the true policy rule for the Brock-Mirman model and to a very
accurate projection method for the other two models. The * indicates that two separate
linear rules are used for the two values of z and ** indicates that the approximation is
calculated as described in appendix B.1. Results are based on a time path of 10,000
observations.


