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1. INTRODUCTION.

In many structural economic or time-series models, the errors may have
heterogeneity and temporal dependence of unknown form. Thus, to draw more accurate
inferences from estimated parameters, it has become increasingly common to construct
test statistics using a heteroskedasticity and autocorrelation consistent (HAC) or “robust”
covariance matrix. Since the estimated covariance matrix approaches a constant value
as the sample length becomes arbitrarily large, the test statistic typically has a standard
normal or chi-squared limiting distribution, which isused in constructing confidence
intervals and performing hypothesis tests.

However, to the extent that the estimated HAC covariance matrix exhibits
substantial mean-squared error (MSE) in finite samples, the resulting inferences may be
severdy distorted. For example, substantial variation in the estimated standard error
generally causes a t-gtatistic to take large values (in absol ute terms) more frequently than
predicted by the limiting standard normal distribution, thereby leading to a tendency to
over-rgect the null hypothesisin atwo-sided test. Other distortionsin inference can result
when the standard error exhibits bias, skewness, and/or correlation with the estimated
model parameter.

The key step in constructing a HAC covariance matrix is to estimate the spectral
density matrix at frequency zero of a vector of residual terms. In some empirical
problems, the regression residuals are assumed to be generated by a specific parametric
modd. In arationa expectations mode, for example, the Euler equation residuals
typically follow a specific moving-average (MA) process of known finite order.

For these cases, the practitioner can utilize the spectral estimation procedures of
Eichenbaum, Hansen, and Singleton (1988) and West (1994) to obtain a consistent
estimate of the covariance matrix. In the more general case where the regression residuals
can possess heteroskedasticity and temporal dependence of unknown form, existing results
in the spectral density estimation literature (cf. Parzen 1957; Priestley 1982) have
contributed to the rapid devel opment of HAC covariance matrix estimation procedures
(e.g., White 1984; Gallant 1987; Newey and West 1987, 1994; Gallant and White 1988;
Andrews 1991; Robinson 1991; Andrews and Monahan 1992, Den Haan

and Levin 1994; and Lee and Phillips 1994).



These HAC covariance matrix estimation procedures may be classified into two
broad categories. non-parametric kernel-based procedures, and parametric procedures.
Each kernel-based procedure uses a weighted sum of the autocovariances to estimate the
spectral dendity at frequency zero, where the weights are determined by the kernel and the
bandwidth parameter. Each parametric procedure estimates a time-series model and then
constructs the spectral density at frequency zero that isimplied by thismodd. Asshown
in Den Haan and Levin (1994), a parametric spectral estimator is consistent under very
genera conditions similar to those used in the literature to prove consistency of kernel-
based estimators. Furthermore, when the sequence of autocovariances satisfy a standard
invertibility condition, the parametric VAR estimator converges at a faster rate than any
positive semi-definite kernel -based estimator.

To implement a kernel-based procedure, the practitioner must choose a particul ar
kernel, a bandwidth selection method, and a prewhitening filter. To implement a
parametric procedure, the practitioner must choose a class of admissible models and a
criterion to select a particular modd within thisclass.  Simulation experiments indicate
that these choices can have important implications for the accuracy of inferences based on
the estimated HAC covariance matrix. Thus, rather than viewing any of these procedures
asfully “automatic,” a combination of diagnostic statistics and common sense should be
regarded as essentia in practical applications.

Although we focus in this paper on the properties of HAC estimators for
conducting inferences, the spectral estimators discussed in this paper are used in many
other econometric procedures. For example, the Phillips-Perron unit root test requires
aHAC estimator of the spectral density of thefirst difference. A HAC spectral density
estimator is also needed to construct efficient GMM parameter estimates in the case of
overidentifying assumptions. For these exercises one only needs the spectral density at
frequency zero. The techniques discussed in this paper, however, can easily be used to

estimate the spectral density at other frequencies.

! See Robinson (1991) for an alternative procedure to estimate the spectrum over arange of frequencies
and for econometric problems that require estimates of the spectrum over arange of frequencies.



Theremainder of this paper isorganized as follows. Section 2 gives step-by-step
descriptions of five HAC covariance matrix estimation procedures. the kernel-based
procedures proposed by Andrews and Monahan (1992) and Newey and West (1994);
the parametric estimators proposed by Den Haan and Levin (1994) and Lee and Phillips
(1994); and the non-smoothed non-parametric estimator proposed by Robinson (1995).
Section 3 compares the asymptotic properties of kernel-based and parametric estimation
procedures. Sections 4 and 5 analyse the choices faced by a researcher in implementing
kernel-based procedures and parametric procedures, respectively. Section 6 provides

some concluding remarks.



2. HAC COVARIANCE MATRIX ESTIMATORS STEP BY STEP.

In many estimation problems, a parameter etimate y ; for ap” 1 vector y
is obtained from the sample analog of a set of moment conditions, such asE Vi(y o) = 0,
where Vi(y o) isan N 1 vector of residual termswith N3 p. This orthogonality condition
is often used to motivate the following estimator of y .

(2.1 y + =agmin, V&FrVr,

where Vr = é;T:th (y) /T isthevector of sample moments of Vi(y) and FrisanN" N
(possibly) random, symmetric weighting matrix (cf. Hansen 1982). When N = p, then the
results are invariant to the choice of the weighting matrix Fr . In this case? the parameter

Yy +, under regularity conditions, has the following limiting distribution:

(2.2) [DsD ¥ T2 (1-y,) ® NIy

asthesamplesze T ® ¥, where Sisthe spectral density at frequency zero of V(y o), In
isthe N" N identity matrix, and the N" p matrix D is defined as follows:

,V l:l

2.3 D =
(2.3) g Ty

Y:W()H

Usually, D is estimated by its sample analog D+(y ;) and D+(y ;)-D® 0 in probability as
T® ¥.

Two different approaches have been followed in the literature to estimate the
gpectral density of an N° 1 random vector Vi. Non-parametric or kernel-based estimators

have the following form:

(2.4) S = &t k(xl)é,-

j=-T+1
T

where k(% isaweighting function (kernel) and x isa bandwidth parameter. Also,

2 The general formula for the asymptotic covariance matrix is (D¢F+ D7) ™ D¢ Fr S Fr Dt (D¢ Fr D7) ™



(2.5) G = —a“'vv'.., j=0 . T-1,
t=1 ]

and
G = G, j=-1-2 - -T+L
Two widely-used kernels are defined as follows:

Bartlett Kernd: k(x) = %1_ |X| for |X|_£1 .
10  otherwise

25 agsin(6px/5)
12p2x2% 6px/5

Quadratic Spectral (QS) Kernd: K o5(X) i cos(6px/5)%

In contrast, parametric estimators use the spectral density implied by a particular
time-seriesmodd for V;. For example, suppose that V; ismodeled asa VARMA(p,q)
process. Let A, bethe matrix of k-th order AR coefficients, and let B, bethe matrix of
k-th order MA coefficients. Definethe N 1 vector g asV, - 4, A - 4,_,B.,andlet

~

S; = é;kﬂété't be the innovation variance. Then the parametric spectral estimator is

given by:

26) 57 =[1y- &L A [1+&1LB] 51y +aLB[1v - &AL

In this section, we give a step-by-step description of five procedures to estimate
the spectral density at frequency zero of Vi(y o) using a time series of the estimated
residuals Vi(y ;) of length T. The five procedures are: (1) QS-PW, the kernel-based
estimator of Andrews and Monahan (1992); (2) NW-PW, the kernel-based estimator of
Newey and West (1994); (3) VARHAC, the parametric VAR estimator of Den Haan and
Levin (1994); (4) PL, the estimator of Lee and Phillips (1994); and (5) R95, the non-
parametric estimator of Robinson (1995), R95. Lee and Phillips (1994) consider the case
where Vi(y o) isascaar, while the other four papers consider the vector case. In this

section, we describe how these estimators have been used by the authors who proposed



them. With the exception of the R95 estimator, some choices are required to implement

each procedure. The implications of these choices will be analyzed in Sections 4 and 5.

2.1 The QS-PW estimator.

The QS-PW estimator from Andrews and Monahan (1992) applies a prewhitening
AR filter of order b before the kernel-based estimator from Andrews (1991) is used.
When b is set equal to zero in thefirst step, then the estimator isidentical to the
Andrews (1991) estimator.

Sep 1: Obtain estimates for the “ prewhitened” residuals. The following model
is estimated with least-squares.

(27 ViV 1) = & A Vo) + & for t=b+l..T.

Andrews and Monahan (1992) only consider fixed values for b. In their Monte Carlo
experiments, b is set equal to zero or one for each element of Vi(y ;). If bisset equal to
zero, then & ° Vv, (y 1), and the estimator is equal to the estimator from Andrews (1991).
Note that we have placed the term “prewhitened” in quotation marks, because no
correction for serial correlation would be needed if the residuals were truly prewhitened.

Sep 2: Choose a weighting matrix. Under certain regularity conditions, it is

possible to derive the bandwidth parameter growth rate that minimizes the asymptotic
MSE of the spectral estimator (cf. Priestley 1982; Andrews 1991). The optimal bandwidth
parameter sequence for a given kernd depends on an N N? weighting matrix W and on
the smoothness properties of the kernd, asindicated by the characteristic exponent, g (cf.
the discussion in Section 3.2 below). For the Bartlett kernel, g = 1; and for the QS kerndl,
g = 2. For agiven kernd with characteristic exponent g, the asymptotically optimal
bandwidth parameter sequenceis given by:

(2.8) Xy = c(q)[a(q)T]”(zq”).
Here

@Yy (@
2.9 a (q) 2vec(S'Y)' W vec(S'?)

tr(W(1 +K) (SA 9))



i 11447 forq=1
2.10 = i ,
(2.10) oa) 113221 for g=2

K isthe N* N commutation matrix that transforms vec(B) into vec(B¢). S? indicates
the g-th generalized derivative of the spectral dendity at frequency zero, which is defined

asfollows (cf. the discussion in Section 3.2 below):

(2.11) s@ = a,li'c .

Andrews (1991) and Andrews and Monahan (1992) only assign positive weight to
theN diagonal dements of Sand S¥. Denote the n-th weight by wy. In aleast-squares
estimation problem, Andrews and Monahan (1992) set all weights w, corresponding to the
dope coefficients equal to unity, and the element corresponding to the regression intercept
equal to zero. However, as discussed in Section 4.3.3, these weights make the bandwidth
parameter senditive to the scaling of the variables, which can lead to highly unsatisfactory
resultsin practical applications. A straightforward way to avoid this problem isto set w,

equal to theinverse of the variance of V,, (Y ;).

Sep 3: Calculate the data-dependent bandwidth parameter. Andrews (1991) and

Andrews and Monahan (1992) propose that a parametric model be used to provide initial
estimates of Sand S?, which are then plugged into equation (2.9). In simulation

experiments, these authors estimate univariate AR(1) representations for each of the
N elements of & . Denote the resulting parameter estimatesby (f,,$2),n=1, ---, N.

For this parametric model, estimates of a(q) as constructed as follows:*

Fsn
(212 2 =" (1- 1) (1+7)

3 When amore general weighting matrix was chosen in step 2, then a parametric model that provides
estimates for the off-diagonal element of Sand S% must be used.
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(2.13) 4(2)=— e
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Finally, we obtain the following data-dependent bandwidth parameter for the
Bartlett kernd:

(2.14) X7 =11447[4 ()T] ™.
For the QS kernd, the data-dependent bandwidth parameter is given by:

(2.15) x; =132214(2)T]"™.

For any positive semi-definite kernel, the bandwidth parameter must grow
arbitarily large with increasing sample size to ensure the consistency of the spectral
estimator. Thus, even when the data are known a priori to be generated by a finite-order
MA(q) process, the kernel estimator may exhibit very poor propertiesif the bandwidth
parameter isSmply set equal to g (cf. Ogaki 1992). Furthermore, if the kernel estimator is
calculated under the restriction that the autocovariances beyond g are zero, then the
modified estimator is not necessarily positive semi-definite. These considerations highlight
the advantages of using the parametric procedures proposed by Eichenbaum, Hansen and
Singleton (1988) or West (1994) for a MA process of known finite order.

Sep 4: Calculate the spectral density of the “ prewhitened” residuals.

The spectral density at frequency zero of the “prewhitened” resdualsis given by:

N T-1 i N
8™ = & kD) G(j), whee
=T X1
AL 170, . .
(2.16) Gr(j):?aete'm- forj3 0 and,
t=1
G (i) =G (- j) for j <O0.

Sep 5: Calculate the HAC estimate of the spectral density. The estimate of the

gpectral density at frequency zero is given by



A ~ o ~ 11 Aps o v I
(2.17) S ) = - &laAl ST ™[I - &lLA

2.2 The NW-PW estimator.

The NW-PW estimator by Newey and West (1994) is smilar to the QS-PW
estimator. The main difference liesin the procedure used to obtain initial estimates
for Sand S? in equation (2.9). Whereas Andrews (1991) uses a parametric model
to obtain these initial estimates, Newey and West (1994) propose the use of a non-
parametric method.

Sep 1: Obtain estimates for the “ prewhitened” residuals. Same as for QS-PW.

Sep 2: Choose a weighting matrix. Newey and West (1994) assign positive

weight to the diagonal and off-diagonal elements of Sand S?. In particular, given an N" 1
vector w, the N*” N? weighting matrix W in equation (2.9) is specified as a diagonal matrix,
where thei-th diagonal element is equal to thei-th element of vec(wwt). This
specification simplifies the formulafor & (q) in equation (2.9) considerably. In Monte
Carlo smulation experiments, Newey and West (1994) set all e ements of w corresponding
to the slope coefficients equal to one, and the e ement corresponding to the regression
intercept equal to zero. However, this choice of welghts makes the bandwidth parameter
sensitive to the scaling of the variables. Asdiscussed in Section 4.3.3, a straightforward
way to avoid this problem isto set w, equal to the inverse of the standard deviation of
Ve 1)

Sep 3. Calculate the data-dependent bandwidth parameter. When Wisas

described in step 2, then equation (2.9) can be expressed as follows:

, 2
éw' S@w

2.18 ~ - =
(2.18) al) = &g i

Newey and West (1994) propose that a(q) be estimated non-parametrically as follows:
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N 2
. éw S@wu
alq) = &1 =0,4,2, where
() éW’S‘O)WH g
R | A
0 = alif'6,
j=-1

(2.19)

2/9

| = blgelQ for the Bartlett kernel and,
1005

.. 2125

- p. 219
I = bzgloob for the QS Kernd,

where G isdefined asin equation (2.16). Newey and West (1994) consider the values 4

and 12 for by, and the values 3 and 4 for b, . The characteristic exponent of the kernd
determines the rate at which the truncation parameter | increases with sample length T.
Using the estimate of a(q) given in equation (2.19), the data-dependent bandwidth
parameter is determined by equation (2.14) for the Bartlett kerndl, and by equation (2.15)
for the QS kerndl.

Sep 4: Calculate the spectral dengity of the * prewhitened” residuals. Same as
for QS-PW (cf. equation 2.16), using the bandwidth parameter given by Step 3. The

spectral estimator of the vector of “prewhitened” residualsis denoted by SN ™.

Sep 5: Calculate the HAC estimate of the spectral density. Same as for
QS-PW (cf. equation 2.17), using the results of Step 4:

-1

A N o A 1L A o A,
(2.20) Sry ) = [ A0 AL S - AL A,

2.3 The VARHAC estimator .*
The VARHAC estimator of Den Haan and Levin (1994) estimatesa VAR
representation for V, (Y 1), and then constructs the spectral density at frequency zero

implied by this mode.

* GAUSS, RATS, and Fortran programs to calculate the VARHAC estimator can be found on the web-
siter http://weber.ucsd.edu/~wdenhaan.
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Sep 1: Lag order selection for each VAR eguation. For the n" dement V, of

the vector Vi(y ;) (n=1, --- ,N) andfor eachlagorder k = 1, --- ,K, thefollowing
modd is estimated by ordinary least squares.

(2.21) Vi =805 8k dmk) Vi 8, k) fort=K+1--T.

Equation (2.21) representsthe regression of each component of V; on itsown lags and

the lags of the other components. For lag order O, weset &, (k) © V,, . Next, the modd
sdlection criterion iscalculated for each lagorder k =0, -+ , K. Inthiscase,
Akaike s 1973) information criterion is given by:

(2.22) AICKk;n) = logg¢ T =
e %]

Schwarz' (1978) Bayesian information criterion is given by:

(2.23) BIC(kk;n) = Iogg tK+_1rent( )0 kN

+ (T) —

For each dement of V(Y ), the optimal lag order k, is chosen as the value of k

that minimizes AIC(k;n) or BIC(k;n). Den Haan and Levin (1994) show that setting K
equal to T “* leads to a consistent covariance matrix estimator. Note that the only
specifications that are considered are the ones in which al eements of V; enter with the
same number of lagsin the regression equation for V.. This constraint can easily be

relaxed, but at a substantial computational cost when the dimension Nislarge.

Sep 2: Calculate the spectral density of the prewhitened residuals. Let KT be

the largest lag-order chosen by the model selection criterion for the N elements of Vi(y ).
Using theresultsof step 1, therestricted VAR can be expressed as.

(2.24) Vt(yAT) = éETlA;/ARVt-k(yAT) + 6,
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where & is an N 1 vector with typical dement &,(k,). The(n,) element of A is

equal to zeroif k> k, and itisequal to @  (k ,) if K £ k. Theinnovation covariance

matrix SY°*C s estimated as follows:
(2.25) guaminc = m |

Alternatively, seemingly unrelated regression (SUR) methods could be used to obtain joint
estimates of the restricted VAR parameters and the innovation covariance matrix, which
would yield more efficient parameter estimates if the innovation covariance matrix
contains significant off-diagona elements.”

Sep 3: Calculate the HAC estimate of the spectral density. Using the results of

steps 1 and 2, the spectral density matrix at frequency zero is estimated by:
A~ N -1 4 [N -1
(2.26) rrec ) = 1y - &l A s - gl A

2.4ThePL estimator.°

The estimator of Lee and Phillips (1994) combines elements of the procedures
described above. Notethat in this section, V; isassumed to be a scalar process.

Sep 1: Lag order selection using an ARMA specification. Leeand

Phillips (1994) propose that the Hannan-Rissanen recursion (cf. Hannan and Rissanen
1982) be used to determine the order and estimated coefficients of an ARMA
representation of thedata. In the first stage, an AR specification for V, (y ;) is sdected
using AIC asthe model sdlection criterion. The estimated residuals from this regression
aredenoted by & . In the second stage of the algorithm, V, (Y ;) is regressed on lagged

valuesof V,(y ;)and &. Thatis,

N ~ N d~ ~
(2.27) Vily +) = aVeely r) + I?-_lbket-k + &.

T Qog

1

Then pand§ are sdected asthe order estimates that minimize the BIC criterion.

® Efficiency gains can also be achieved in small samples by reestimating the equations using observations
before K , whenever possible.
® A GAUSS subroutine library is available from Predicta Software Inc. (phone: 203-432-3695).
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Let the estimates for 3, and b, using the ARMA( p,§) specification be denoted by

a, and Bk respectively. Then the estimated residuals from this mode are given by:
L A <P A A (9 NP

(2.28) g€ = Vilyq)- I?-_lakvt-k(y 1) - I?-_lbket-k -

Sep 2: Calculate the spectral density of the * prewhitened” residuals.
The procedure of Andrews (1991) is used to obtain an estimate for the spectral density at

frequency zero of the “prewhitened” residuals é (as described in Steps 2 to 4 of Section
2.1 above). Asin Leeand Phillips (1994), we use S to denote the spectral estimator

at frequency zero of the process & .

Sep 3: Calculate the HAC estimate of the spectral density. The spectral density

at frequency zero of the process V, (Y ;) isestimated by:
[1+a1.6] s»

2 P A 2
1-aral

(2.29) Sty ) =

2.5 The R95 estimator .

Robinson (1995) has recently proposed a non-parametric estimator of the spectral
density of uAx. Thisnon-parametric estimator does not require the use of akernd. The
RO5 estimator is given by:

1,

& = AGMNHE(), wherefor z = u, x
o am

(2.30) G(j)) = ;gl(zt-Z)(zﬂ,--z) forj3 0, and
Gi(j) = Gi(-j) forj<0, and
_ 1 7
*oc T A

An interesting feature of this estimator is that no choices are required, making it the
simplest HAC estimator discussed in this chapter. However, the R95 estimator has an
important disadvantage. Consistency requires that the following condition is satisfied:
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(2.31) E(UoAxo) (UGAXG) = E(uotig) A E(xox9).

This condition rules out any form of heteroskedasticity. Moreover, as noted by

Robinson (1995), both u; and x; must be random processes, so the estimator cannot be
used for scalar processes. Thiswould occur when V; contains two e ements, one of which
isacongtant term. In this case, the R95 estimator isidentical to the sample periodogram,

which is not a consistent estimator of the spectral density (cf. Priestley 1982).
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3. ASYMPTOTIC PROPERTIES

In this section, we discuss the asymptotic properties of HAC robust covariance
matrix estimation procedures. In particular, we discuss consistency and the rates at which
the estimators converge to the population values. For each of the estimation procedures
reviewed in Section 2, the specific assumptions and methods of proof used to verify these
asymptotic properties can be found in the references cited there. Therefore, in this section
we focus on the broader issues concerning the large-sample performance of these
estimators. Nevertheless, this section is more technical than the other section in this paper.
However, the reader does not have to read this section to be able to follow Sections 4 and

5. In Section 3.1, we give an overview of the issues discussed in this section.

3.1 General Considerations.

The estimated HAC covariance matrix istypically used to construct test statistics
based on the limiting distribution of the regression parameters. Given that the true limiting
covariance matrix is constant, the test statistic typically has a standard normal or chi-
squared limiting distribution. To the extent that the estimated HAC covariance matrix is
not constant due to sampling variation, the test satistic will tend to deviate from its
limiting distribution and thereby generate distorted inferences.

Based on these considerations, the key asymptotic property to be determined isthe
rate at which the estimated HAC covariance matrix converges (in mean-squared) to
itsfixed limiting value. From equation (2.2), it can be seen that this rate depends on the
convergence of the differential matrix, D+ , and the estimated spectral density matrix
at frequency zero, Sy . Thedifferential matrix Dt (defined in equation 2.3) typically
converges at the rate Oy(T 2 ), where the notation O,(3 indicates convergencein
probability.” However, to obtain a spectral estimator that captures general temporal
dependence, it is necessary to increase the bandwidth parameter (for a kernel-based
procedure) or the lag order (for a parametric procedure). Thus, the estimated spectral
density matrix generally converges more dowly than Op(T'”2 ), S0 that this becomes the

rate-limiting step in constructing a HAC covariance matrix. Under certain regularity

" Asindicated in footnote 2, in estimation problems where N > p, the asymptotic covariance matrix also
depends on the limiting value of the weighting matrix, Fr . However, this matrix typically converges at
rate Op(T'l’2 ), and may converge at an even faster rate if the weights are non-stochastic.
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conditions, the use of estimated residuals rather than observed data has a negligible effect
on the asymptotic properties (cf. Newey and West 1987; Andrews 1991; Den Haan and
Levin 1994).

In light of these considerations, the asymptotic properties of alternative HAC
covariance matrix estimators can be largely understood by analyzing the properties of the
corresponding spectral density estimators. The asymptotic mean-squared error (MSE)
of the spectral density estimator can be decomposed into a non-stochastic component,
henceforth referred to as the asymptotic bias, and a stochastic component, henceforth
referred to as the asymptotic variance. Sections 3.2 and 3.3 discuss these components for
kernel-based spectral estimators, and Sections 3.4 and 3.5 consider these components for
the VAR spectral estimator.

3.2 Asymptotic Bias of Kernel Estimators.

Kernel-based spectral estimators face three sources of bias. First, from equation
(2.5), it can be seen that the sample autocovariances used by the kernel estimator divide by
T and not by the actual number of observations used, so that each sample autocovariance
G (j)isbiased by thefactor - j/(T - j). However, this source of biaswill generally be
asymptotically negligible. For example, the truncated, Bartlett, and Parzen kernels only
assign non-zero weight to sample autocovariances of order |j | < X7 , sothat the
bandwidth parameter x; may also be referred to as the lag truncation point for these
kernels. For thetruncated kernd, thisbiaswill be [x{|/(T-|xr| ). For the Bartlett and
Parzen kernels, the weight assigned to autocovariances | j | < Xxr declines at least linearly
as afunction of the lag order j, so that the maximum degrees-of-freedom biasis even
smaller. Thus, aslong asxr grows sufficiently dowly as a function of the sample length
T, this source of bias becomes asymptotically negligible. Similar consderations apply to
the QS kernd, and to all other kernels that ensure a positive semi-definite spectral density
matrix, even when the bandwidth parameter does not serve as alag truncation point.

Second, kerndl-based estimators of the spectral density incur bias due to assigning
zero weight to autocovariances of lag orders longer than the samplelength T. Thetrue

spectral density at frequency zero can be expressed as:
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+¥
(3.) f(0) = & d(j).

j=-¥
Thus, the bias due to neglected autocovariancesis equal to the sum of all autocovariances
G(j), summingover T £ |j| £ +¥. Thissourceof bias clearly diminishes with

increasing sample length, but it is useful to quantify the rate at which the bias vanishes

asT ® ¥. In particular, suppose that the absolute value of G j) shrinks geometrically

at therate |j|** for somer > 0and somed> 1. Thenitisnoat difficult to show

(cf. Davidson 1994, pp. 31-32) that:

[ 6(i)] < +¥.

¥

(3.2)

! Qo

]

In this case, the bias due to neglected autocovariances vanishes at therate T'. Itis
interesting to note that for even values of the parameter r, the left-hand side of

equation (3.2) can be viewed as the r-th derivative of the spectral density at frequency
zero. For r > 0, Parzen and subsequent authors have referred to this formula as the
generalized derivative of the spectral density at frequency zero (cf. Priestley 1982,

p. 459). Thus, the parameter r can be interpreted as the degree of smoothness of the
spectral dendity at frequency zero; i.e, r indicates the highest order for which the
derivative of the spectral density iswell-defined. For finite-order ARMA processes, the
autocovariances vanish at an exponential rate; in this case, the spectral dengity isinfinitely
differentiable at frequency zero, so that an arbitrarily large value of r may be chosen . If
r <1, then the spectral density displaysa*“cusp” (or kink) at frequency zero, and is not
differentiable in the generalized sense.

The third and dominant source of bias faced by kernd estimatorsisincurred by
placing weights less than unity on the autocovariances at 1ags shorter than the sample
length. Asseen in equation (3.1), the true spectral dendity at frequency zero assigns a
weight of unity to all of the autocovariances. The sample periodogram at frequency zero
places a weight of unity on all of the sample autocovariances, but it is easy to see that the
variance of this estimator does not converge to zero. For example, the sample
autocovariance of order T - 1 isaways determined by the first and last observations,
regardless of the sample length.
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The truncated kerndl is the simplest method that yields a consistent estimate of
the spectral density. This estimator places weight of unity on all autocovariances up to
the lag truncation point xr . Thus, from equation (3.2), it can be seen that the bias of
the truncated kernd vanishes at the rate X+, arate that may be very rapid if the spectral
density is very smooth at frequency zero. In fact, if the data are generated by afinite-
order moving-average (MA) process, this bias disappears once the lag truncation point
reaches the MA order. Unfortunately, the truncated kernel does not necessarily yield a
positive semi-definite spectral density matrix, which limitsits usefulnessin HAC
covariance matrix estimation. Note that positive semi-definite kernels require that x;® ¥
asT ® ¥ todiminate the bias, even when the data are generated by a finite-order moving
average processes.

This source of bias is more severe for estimatorsin the class of kernels that ensure
a positive semi-definite spectral dendity matrix. Kerndsin this class must assign weights
less than unity to al sample autocovariances (except the sample variance), and the weights
must decline toward zero with increasing lag order j. For example, as seen below
equation (2.5), the Bartlett kernd assigns linearly declining weights that reach zero at the
lag truncation point xr . The QS kerned assigns weights that decline non-linearly, reaching
zero at alag order of about 120 percent of the bandwidth parameter xr and then oscillate
around zero for higher lag orders up to the sample length T. For any particular kerne

k(%, this source of bias can be expressed as follows:

—

-1

(3.9 Bias (Tx7) = & (1- k(j/x1))d(j).

j=-T+1

Sincek(z) < 1for zt O, thisformulaindicates that the bandwidth parameter (lag
truncation point) must increase with sample length to reduce this source of bias.
Even if the datais generated by a finite-order MA process, so that true autocovariances
are equal to zero beyond some maximum lag length, it is necessary for Xy ® ¥ toensure
the consstency of estimatorsin this class of kernds. In this case, the kerndl argument j/x;
declines toward zero for each fixed value of j.

If the bandwidth parameter increases with the sample length, and the
autocovariances vanish at a sufficiently rapid rate (i.e., the spectral density is sufficiently
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smooth at frequency zero), we can expect that the asymptotic bias will ultimately be
determined by the behavior of the kernd k(z) around z = 0 as the sample length grows
arbitrarily large. For example, the weights assigned to the low-order autocovariances are
closer to unity for the QS kernd than for the Bartlett kerndl, so that we may expect this
biasto vanish at afaster rate for the QS kerndl. This property can be made more precise
by considering the characteristic exponent g, which is defined as the largest positive
integer such that (1 - k(2))/| Z° hasafinite, non-zerolimit asz ® O (cf. Priestley 1982,
p. 459). Thus, the characteristic exponent can be viewed as indicating the smoothness of
thekernd k(z) at z= 0. Itiseasy to verify that q = 1 for the Bartlett kernel, and that
g = 2for the QS kernd. More generaly, it can be shown that g £ 2 for every kernd that
ensures a positive semi-definite spectral density matrix (Priestley 1982, p. 568). The
truncated kernel, which isinfinitely differentiable at z = 0, obvioudy violates this
condition.

Now we can quantify the asymptotic bias for the class of kernelsthat ensure a
positive semi-definite matrix. For agiven kernel k(3 with characteristic exponent g, we

can rewrite equation (3.3) asfollows:

. w1 1~ k(j/x;
(3.4) Bias (T.x7) =x7 & 17— §[| |’ G(J
j=- T4 § | il xT
If we assumethat r, the largest generalized derivative of the spectral density at frequency
zero, is at least aslarge as the characteristic exponent g, then the term in curly bracketsis
bounded and the term in square brackets is absolute summable. Thus, this source of bias

vanishes at rate O(x;%) asthe bandwidth parameter x; ® +¥. If we also assume that

the bandwidth parameter increases sufficiently dowly that x3 /T ® 0, then it can be

shown that the bias indicated in equation (3.4) dominates the previous two sources of bias
(cf. Priestley 1982, p. 459).

3.3 Asymptotic Variance and M SE of Kernel Estimators.
Since kernel-based spectral estimators are calculated from the sample

autocovariances, it is clear that the variance of the kernel-based estimate will depend



20

on the higher moments and temporal dependence of the true data generating process.

To analyze thisissue further, let us consder a stochastic process { i} which has stationary
moments up to at least the fourth order. In this case, the fourth-order cumulants
K4(t,t+],t+ m,t+n) measure the extent to which this process displays excess kurtosis
relative to the fourth-order momentsimplied by a normally distributed process, V; , with
identical autocovariances (cf. Hannan 1970, p. 23; Priestley 1982, p. 58-59).

(35) K4(t,t+],t+ m,t+ n) = E(Vt = EVt) (Vt+j = EVt+J) (Vt+m = EVt+m) (Vt+n = EVt+n)
- E(\7t - E\7t) (\7t+j - E\7t+j ) (\7t+m - E\7t+m) (\7t+n - E\7t+n)-

Now suppose that this generalized form of excess kurtosisis not too large, so that the

fourth-order cumulants are absolutely summable:

+¥ +¥ +¥
(3.6) a4 a4 & K, (tt+j,t+mt+n) < +¥ .

j=-¥ m=-¥ n=-¥

Under this condition, Bartlett (1946) obtained results that provided the foundation for all

subsequent research on the sampling properties of spectral estimators. First, the variance
of each sample autocovariance G, () vanishesat therate /T . Second, if we consider
two sample autocovariances G; (m)and G; (n) at different lagsm? n, then the covariance
between G;(m)and G (n) vanishes at the rate UT ; i.e., the sampling variation in sample
autocovariances at different lags becomes uncorrelated as the sample length grows large.
These results are immediately applicable to any kernel-based spectral estimator,
such as the truncated or Bartlett kernel, that can be expressed as a weighted average of
the sample autocovariancesfor lags 0 £ | £ X7 ;i.e, any kernd that assigns zero
weight to sample autocovariances beyond the lag truncation point Xt . In particular, these
results indicate that such estimators will have asymptotic variance of O, (xr /T ) aslong
asthe bandwidth parameter xr grows at a dower rate than the samplelength T. This
result for the asymptotic variance can also be obtained for spectral estimators based on
more general kernds, such asthe QS kernd (cf. Priestley 1982, p. 457; Andrews 1988,

1991). Finally, these results can be extended to non-stationary processes, under certain

conditions on temporal dependence and the existence of sufficiently high moments
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(cf. Andrews 1991).°

Using this result and those of the previous section, we can now evaluate the
asymptotic MSE for the class of kernelsthat yield a positive semi-definite spectral density
matrix. In particular, by adding the squared asymptotic bias to the asymptotic variance
for agiven kernel k(¥ with characteristic exponent g, the asymptotic MSE can be

expressed as follows:
3.7) MSE, (T, x;) = Ox;*) + O, (x; /T).

This formula highlights the M SE tradeoff in choosing the bandwidth parameter x; for a
given sample of length T. On the one hand, using a higher bandwidth reduces the bias
caused by the declining kerne weights. On the other hand, raising the bandwidth places
larger weight on the high-order sample autocovariances that are relatively poorly
estimated.

We can also use equation (3.7) to evaluate the optimal growth rate of the
bandwidth parameter, xr , and the corresponding minimum asymptotic M SE.
By differentiating the right-hand-side of equation (3.7) with respect to x; and setting
the result to zero, we find that the asymptotic MSE is minimized for a kernel with
characteristic exponent q when the bandwidth parameter grows at rate O(T /(% 1)),
and that the minimum asymptotic MSE vanishes at rate O(T 2/ *1)) Thus, as seen
in equation (2.8), the optimal growth rate of the bandwidth parameter for the QS kerndl is
O(T®). Using the optimal sequence of bandwidth parameters, the QS spectral estimator

converges in mean-squared at rate O,(T-2'°).

As discussed in the previous section, the weighting scheme of the Bartlett kernel
imposes a higher degree of bias than the QS. Thus, as seen in equation (2.8), the Bartlett
kernel utilizes a higher bandwidth parameter growth rate of O(T **), which diminishesthe
influence of the bias, but at the cost of additional variance. Thus, the spectral estimator

based on the Bartlett kernel convergesin mean-squared at a somewhat dower rate of

Op(-l--lls)_

8 The consistency of kernel-based estimators has been demonstrated under even weaker conditions by
Hansen (1992).
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3.4 Asymptotic Bias of the VAR Spectral Estimator.

As seen in equation (2.24), the VARHAC estimator depends on the VAR
coefficients and the estimated innovation covariance matrix. Since these can be expressed
in terms of the sample autocovariances, the asymptotic properties of the VAR spectral
estimator can be analyzed using essentially the same methods discussed in Sections 3.2
and 3.3 for kernel-based spectral estimators. In this discussion, we will consder a scalar
process {V,} .y, asshown in Den Haan and Levin (1994), it is reatively straightforward
to extend this analysis to multivariate processes.

Before analyzing the properties of AR approximation, it is useful to review the
conditions under which the true autocovariance structure of a stochastic process can be
represented by an infinite-order AR. These conditions are well-understood for weakly
stationary processes. if atime seriesislinearly non-deterministic, then the process has an
MA(¥) representation with white-noise (homoscedastic and orthogonal) innovations; if no
linear combination of {V,}-.y has zero variance, then the process also has an AR(¥)
representation. In the absence of weak stationarity, the stochastic process itself does not
have an MA(¥) or AR(¥) representation with white-noise innovations. Nevertheless,
under the same conditions that have been used to analyze kernel-based spectral estimators,
Den Haan and Levin (1994) have demonstrated that the limiting population
autocovariances have an MA(¥) representation. Furthermore, if no linear combination of
the data has zero variance (a condition typically used to verify the temporal dependence
conditions utilized for kernel-based estimators), then the limiting autocovariances also
have an AR(¥) representation. Thus, to smplify the following discussion, we will focus
on the case in which the stochastic processis strictly stationary.

To evaluate the asymptotic bias of the AR spectral estimator, it is useful to define
the sequence of Toeplitz matrices Gy, , and the corresponding infinite-dimensional matrix
Gy . Theautocovariance CG(j - i) comprisesthe (i,j)th lement of G, fori, j=1,---,h,
and the (i,j)th element of Gy fori,j =1, 2, --- . It isalso useful to define the sequence of

vectors g, and the corresponding infinite-dimensional vector gy , where CG(j) comprises

thej-th ement of g, for j=1,---, h,and thej-thdementof g« forj=1,2, ---.
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Now if we assume that the spectral density function f(w) is positive over [0,p],
then it can be shown that all eigenvalues of Gy are positive, and that all eigenvalues
of G, are positivefor all h 3 1 (Grenander and Szeg6 1958). Thus, det(Gy )t 0, and
det(G, )t Ofor al h 3 1, thereby ruling out cases in which some linear combination
of theelementsof (M, , ---, Vin ) haszero variance. In this casg, the infinite-order
YuleWalker equations Gy Ay = gy arewell-defined (cf. Hannan and Kavalieris 1983,
1986; Hannan and Deistler 1988). Sincetheinverseof Gy isalso well-defined, the
infinite-dimensional vector Ay of AR(¥) coefficients and the innovation variance Sy

can be expressed as follows:
(3.8 Ar =Glogy and Sy = GO0) + g& Ay .

The spectral density at frequency zero can be expressed as follows:
e X U

(3.9) f(0) = Sygl- & A(i)g
e = a

In this case, it can also be shown that the AR(¥ ) coefficients decline at the samerate as

the autocovariances;

¥ r . 3 (T ;
(3.10) it & [i'|6(i) < +¥, then & [j["|A(i) < +¥.

j=-¥ j=0

Now consider the AR(h) approximation, which is based on the true

autocovariances j) for j =0, --- ,h. Since det(Gy,) > O for al h, we can express the

autoregressive coefficient vector A, and the innovation variance Sy, as follows:
(3.112) A =G;tg, and S, = GO) + gt A, .
The spectral density at frequency zero corresponding to the AR(h) approximation

can be expressed as follows:

(3.12) s = s,d- & AN
e = u
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Den Haan and Levin (1994) establish the asymptotic bias of the AR(h) spectral

estimator as follows:
(3.13) Bias, (h) = | S - f(0)| = O(h™").

Thus, as seen from equation (3.2), the smoothness of the spectral density at
frequency zero determines the asymptotic bias of the AR spectral estimator. Thus,
unless the data are generated by afinite-order AR process, it will be required that the
lag order h ® ¥ inorder to capture the true autocovariance structure of the data.

From the discussion in Section 3.2, it can be seen that the bias of the AR(h)
spectral estimator vanishes at the same rate as the bias of the truncated kernel estimator.
As previoudy noted, however, the truncated kernel does not necessarily yield a positive
semi-definite spectral density at frequency zero, whereas the AR(h) spectral estimator is
ensured to be positive semi-definite by construction.

To understand this result further, it is useful to note that the AR spectral estimator
can beexpressed as S* =8 |, G, (j) , where G, (j) are the autocovariancesimplied by
the AR(h) model. From equation (3.11), it can be seen that the AR(h) coefficients are
determined by the hth-order Yule-Walker equations, sothat G, (j) = G(j) for |j| £ h.
Thus, the difference between the AR(h) and truncated spectral estimators can be
expressed as D =4 liih G, (j) . Furthermore, aswith any stationary finite-order AR

process, the implied higher-order autocovariances G, (j) decline exponentially toward
zeroasj ® ¥ (cf. Hamilton 1994, p. 266). Thisimpliesthat D& vanishes at the samerate
astheleadingterm G (h+1) = O(h*"). Thus, by incdluding these implied higher-order

autocovariances, the VAR(h) estimator ensures a positive definite spectral density matrix

with negligible effects on the asymptotic bias relative to the truncated kernd estimator.
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3.5 Asymptotic Variance and M SE of the VAR Spectral Estimator.
To analyze the asymptotic variance of the AR spectral estimator, we define the

sequence of sample Toeplitz matrices éTh , Where the (j-i)-th sample autocovariance of
V.Y 1), ér(j - 1), comprisesthe (i,j)th eement of éTh fori, j=1,---, h;and we
define the sequence of sample vectors §q;, ,whereér(j) comprises the j-th element of
dr, for j =1, ---, h. Then the estimated AR(h) coefficient vector Ay, and the estimated

innovation variance éTh can be expressed as follows:

A

(3.14) An =Gt G andSy, = Gi(0) + 6 Ay,

The spectral density estimator at frequency zero corresponding to the estimated
AR (h) approximation can be expressed as follows:

c/

Sar — Q& é
(315) = 8,8
e

1 Qo=

lATh(j)'

o

J

Now we can evaluate the rate at which A’“‘,ﬁ convergesto S§&. From equations
(3.14) and (3.15), it isclear that the AR spectral estimator can be expressed in terms of
the sample autocovariances. If the maximum lag order Hy isrestricted to grow at rate

O(T®), then Den Haan and Levin (1994) demonstrate that é{hl converges at rate
o(h'T)*to G, ', uniformlyin O£ h £ Hr. In thiscase, the asymptotic variance of Aa,ﬁ
is dominated by the sum of elements of the vector G *(Gr, - 0y ), which can be

expressed as aweighted average of the sample covariance deviations G;(j) - G(j).

Thus, Bartlett’s (1946) result (or its generalization to non-stationary processes) can be
applied directly to thisweighted average. Thus, we find the asymptotic variance of the
AR spectral estimator to be O(h/T ), uniformly inO£ h £ Hr. In other words, the
asymptotic variance of the AR spectral estimator converges at the same rate as the
asymptotic variance of kernel-based spectral estimators.

Combining this result with the asymptotic bias given in equation (3.13), we can

eval uate the asymptotic MSE of S asfollows:
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(3.16) MSE, (T, ) = O(h*) + O, (h /T).

uniformly in O £ hy £ Hr = O(T ¥3). Thisresult reveals a MSE tradeoff in the choice of lag
order h, similar to the M SE tradeoff in the choice of bandwidth parameter for kernel-
based estimators. namely, ahigher lag order reduces the asymptotic bias and increases the
asymptotic variance. Since the optimal growth rate of the lag order depends on the
smoothness of the spectral density at frequency zero, one might suppose that the optimal
rate cannot be identified in practice.

In fact, however, we can approach arbitrarily closely to the optimal growth rate
by usng Schwarz' (1978) Bayesian Information Criterion (BIC) to select the lag order.
The BIC penalty term, h log(T)/T, is sufficiently large to dominate the sampling variation
of the estimated innovation covariance matrix, so that éTh can be used as a proxy for S,
the covariance matrix implied by the true AR(h) approximation. Furthermore, S,
converges at rate O(h™") to Sy, theinnovation covariance matrix implied by the AR(¥)
representation. Thus, BIC provides a means of evaluating the tradeoff between
asymptotic bias (by measuring the extent to which additional lags improve the goodness-
of-fit) and asymptotic variance (by penalizing the use of additional parameters).

If the spectral density is differentiable at frequency zero (i.e,, r 3 1), thelag order
chosen by BIC convergesto (T /log(T))Y®*Y, so that the AR spectral estimator

converges in probability at a geometric rate arbitrarily closeto T~/ (1) 1 the true
autocovariances correspond to those of a finite-order ARMA process (i.e., r® +¥), then
the lag order chosen by BIC grows at alogarithmic rate, and the AR spectral estimator
converges in probability at arate arbitrarily closeto T *2. Finally, in the case where the
spectral dendity is not differentiable at frequency zero (i.e., 0 <r < 1), thelag order chosen
by BIC approaches the maximum rate H(T) = T 3, and the AR spectral estimator
converges in probability at therateT 3.

As previoudy noted, the truncated kernel estimator also has asymptotic bias of
O(h ") and asymptatic variance of Oy(h/T). Thus, in principle, the truncated kernel

r+1)

estimator could converge at rate T~/ (2r+1) the lag truncation point Xr could be chosen

to grow at the optimal rate. In practice, however, a data-dependent bandwidth selection
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procedure has not been devel oped for the truncated kernel estimator (cf. Priestley 1982,
pp. 460-462; White 1984, p. 159; Andrews 1991, p. 834).

Finally, these asymptotic results indicate that the AR spectral estimator converges
at afaster rate than any positive semi-definite kernel-based estimator for almost all
autocovariance structures. If g < r, the positive definite kernel estimators lose efficiency
by placing weight less than unity on the low-order autocovariances. The extreme caseis
one in which the autocovariances have the structure of a finite-order ARMA process, so
that r isarbitrarily large. In this case, the AR spectral estimator converges at arate
approaching O, (T %), whereas spectral estimators based on either the Parzen or QS
kernel converge at the rate O, (T %) and the spectral estimator based on the Bartlett
kernel converges at the rate O, (T 3).

For r < q, positive definite kerndl estimators with q = 2 are also less efficient than
the AR spectral estimator, because the bandwidth parameter specified by Andrews (1991)
grows too slowly. For example, in the case wherer = 1/2, BIC will asymptotically select
the maximum lag order O(T “®), so that the AR spectral estimator converges at rate
O, (T 9. In contrast, the spectral estimators which are based on either the Parzen or QS
kerndl, and which utilize Andrews (1991) bandwidth selection procedure, will converge at
rate O, (T V). Thus, the VAR spectral estimator converges at a faster rate than the QS
or Parzen kernels except in the special case wherer isexactly equal to 2. The AR spectral
estimator converges at a faster rate than the Bartlett kernel estimator forr > 1. If r £1,
the bandwidth parameter of the Bartlett kernel and the VAR lag order both increase at
rate O(T “®), so that both estimators converge in probability at the samerate T~/ 2in this

case.
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4. CHOICESFOR KERNEL-BASED ESTIMATORS.

To implement a kernel-based procedure, the practitioner must choose a particul ar
kernel and bandwidth parameter, aswell as the order of a prewhitening filter, if any.
To construct a data-dependent bandwidth parameter, as proposed by Andrews (1991)
and Newey and West (1994), the practitioner must choose a weighting matrix and a
method of providing initial estimates of the spectral density and itsfirst or second
derivative at frequency zero. In this section, we utilize smulation experiments to highlight
the implications of these choices for the finite-sample behavior of the data-dependent
bandwidth parameter, the estimated HAC covariance matrix, and the resulting accuracy of
inferences on linear regression parameters. Thisanalysis also provides some useful

guiddinesto aid a practitioner in the effective implementation of these procedures.

4.1 Prewhitening.

Andrews and Monahan (1992) considered the benefits of applying an AR(1)
prewnhitening filter to the vector of residuals before using a kernel-based estimator
(cf. Priestley 1982, pp. 556-557). The AR(1) filter has provided improved inference
properties in many Monte Carlo smulation experiments, some of which have considered
data generating processes resembling actual economic time series (cf. Andrews and
Monahan 1992; Newey and West 1994; Christiano and Den Haan 1996; and Burnside and
Eichenbaum 1996).

In the absence of a prewhitening filter, kernel-based spectral estimators tend to
exhibit substantial biasin cases where the autocovariances decline gradually toward zero.
First, kernel-based procedures assign zero (or approximately zero) weight to
autocovariances at lags higher than the bandwidth parameter. Second, to ensure a positive
semi-definite estimator, kernel-based procedures assign weights less than unity to
autocovariances at lags less than the bandwidth parameter. The rate at which these
weights decline toward zero also depends on the bandwidth parameter: i.e., the auto-
covariance at a given lag receives less weight when the bandwidth parameter is small.

The AR(2) filter estimates the value of an autoregressive root based on the first-
order autocovariance. After thefiltering of this autoregressive root, the autocovariances

of the prewhitened residuals may decline more rapidly toward zero, thereby reducing the
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bias of the kerndl-based estimator. Thus, AR(1) prewhitening can provide finite-sample
benefits even when the true dgp is not alow-order VAR process. For example, Andrews
and Monahan (1992, Table V) find that the AR(2) filter yieldsimproved inference
properties even when the resduals are MA(Q) processes.

It should also be noted that the AR(1) prewhitening filter isa special case of
parametric estimators which determine the autoregressive order using a data-dependent
modd sdlection criterion. Lee and Phillips (1994) consider the use of BIC to choose an
ARMA process to prewhiten the data, and then apply a kernel-based estimator to the
prewhitened resduals. In the case where the true data generating process is a finite-order
ARMA with i.i.d. innovations, Lee and Phillips (1994) have demonstrated that the optimal
bandwidth parameter grows very dowly, so that the kernel has negligible asymptotic
influence on the spectral estimate. The asymptotic analysis of Den Haan and Levin (1994)
indicates that this result holds under much more general conditions. as the sample length
increases, the data becomes truly prewhitened by the parametric procedure, so that no
additional benefits can be derived from applying a kernd-based procedure to the
prewhitened data. In small samples, of course, the parametric procedure does not
completely prewhiten the data, so that applying a kernel estimator to the parametric
residuals may provide improved inferences under certain conditions. In future research,

this possibility should be explored using Monte Carlo smulation experiments.

4.2 Choice of the kernel.

Many different kernels have been considered in the literature. The truncated kernel
assigns unit weight to all sample autocovariances up to the bandwidth parameter, also
referred to as the lag truncation point (cf. White 1984). Nevertheless, the truncated kernel
does not ensure a positive semi-definite covariance matrix, and no method is currently
available for determining the optimal lag truncation point. In contrast, to ensure a positive
semi-definite spectral estimate, the Bartlett, Parzen, and QS kernels assign weights less
than unity to these sample autocovariances, with the weights declining toward zero as the
autocovariance lag increases. Within the class of kernelsthat ensure a positive semi-
definite spectral estimate, the QS kernel minimizes the asymptotic MSE
(cf. Priestley 1982; Andrews 1991). However, several smulation studies indicate that all
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kernels within this class have fairly smilar finite-sample properties (cf. Andrews 1991,
Newey and West 1994; Christiano and Den Haan 1996).

4.3 Optimal Bandwidth Procedure.

The choice of the bandwidth parameter is crucial for the behavior of a kerne-based
estimator. Increasing the bandwidth parameter reduces the bias while increasing the
variance of the estimated covariance matrix. The sengitivity of inferencesto the
value of the bandwidth parameter motivated the derivation of data-dependent bandwidth
parameter methods proposed by Andrews (1991) and Newey and West (1994). Although
these methods are sometimes referred to as “automatic,” the practitioner should be aware
of several important issues which arise in obtaining a data-dependent bandwidth
parameter. Section 4.3.1 discusses the optimality criterion used in deriving these methods.
Section 4.3.2 reviews the calculation of preliminary spectral estimates required to
implement these methods. Section 4.3.3 considers the determination of the weighting
matrix in multivariate settings, and highlights the restriction that a single bandwidth must

be used for all eements to ensure a positive semi-definite HAC covariance matrix.

4.3.1 The Optimality criterion.

Andrews (1991) and Newey and West (1994) used the asymptotic (truncated)
MSE as the optimality criterion in obtaining the bandwidth parameter formula given in
equation (2.8) above. Thus, for agiven kernd, the data-dependent bandwidth parameter
formula only expresses the rate at which the bandwidth parameter should grow as a
function of the sample size, and cannot indicate the optimal value of the bandwidth
parameter for any particular finite sample. More precisely, for any fixed integer M,
the bandwidth parameter xr** = xt* + M meets the same asymptotic optimality criterion
as the bandwidth parameter x1* defined in equation (2.8). Unfortunately, while x*
and x** may yidd dramatically different results in a particular finite sample, thereisno a
priori basis upon which to choose one bandwidth parameter over the other.

This non-uniqueness property may appear sSimilar to other uses of asymptotic

optimality criteriain the literature. For example, if the OLS estimator BT IS consistent,
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then BT + M/T isalso consistent for any fixed value of M. The essential differenceisthat

the OLS estimator also satisfies a sensble finite-sample estimation criterion (namely,
minimizing the sum of squared residuals of the regression modd), whereas current
bandwidth selection procedures do not satisfy any particular finite-sample criterion.

Although the data-dependent bandwidth parameter formula given in equation (2.8)
does not have a specific finite-sample justification, several Smulation studies indicate that
this formula performs reasonably well in finite samples, if reasonably good initial spectral
density estimates can be plugged into thisformula. The question of how to obtain such
initial estimates will be discussed in Sections 4.3.2 and 4.3.3.

4.3.2 Implementing the Optimal Bandwidth Procedure.
The data-dependent bandwidth parameter formula given in equation (2.8)
depends on Sand S?, the spectral density and its g-th generalized derivative at frequency

zero. Thus, preliminary estimates S; and é@ arerequired to obtain an estimate of the

data-dependent bandwidth parameter )2} , which isthen used to obtain the final kernel-

based spectral estimator. Asindicated in Section 2.1 above, Andrews (1991) and
Andrews and Monahan (1992) obtain these preliminary estimates of Sand S
using a parametric approach, namdly, fitting a univariate AR(1) modd to each element
of theresidual vector V(Y ;). Asindicated in Section 2.2 above, Newey and West (1994)
obtain these initial estimates using a non-parametric approach, based on truncated sums of
the sample autocovariances.’

The key difference between these two methods is that the procedure of
Andrews (1991) and Andrews and Monahan (1992) only considers the first-order
autocorrelation of each eement of the residual vector, whereas the procedure of Newey
and West (1994) considers several autocovariances and cross-covariances. The following
Monte Carlo experiment illustrates the extent to which this distinction can be important in
practice.

Consider the problem of estimating the mean of the following scalar process:

° That is, they calculate these statistics using the truncated kerndl. The estimated bandwidth will always
be positive, since these statistics are squared in the formula for the optimal bandwidth.
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(4.1) Y. =& +nei+ meg ql {23}, and y .=

where e isan i.i.d. normally distributed random variable with zero mean and unit
variance. The parameters are chosen in such away that the first-order autocorrelation
coefficient of the prewhitened seriesis small or equal to zero, but higher-order
autocorrelation coefficients are substantially larger.

Several empirical cases suggest that such atime series process for Y; isnot
unrealigtic. First, Famaand French (1988) documented that for stock returns,
autocorrelations are small for short horizons, but relatively large for large horizons.
For instance, the average first-order autocorrelation across industriesis equal to -0.03 for
one-year returns, but equal to -0.34 for four-year returns. Second, Christiano and Den
Haan (1994) used a dgp resembling that of US quarterly GNP, and found that some
prewhitened resduals had a very low first-order MA coefficient, but substantial higher-
order serial correlation. Thisexample will be discussed further in Section 4.4.

Table 1: The ahility of QS-PW and QS-NW to detect serial correation patterns.

QS-PW Average NW-PW Average

A A

n m 99% 95% 90% Xt 95% 95% 90% Xt

00 -0.3 100.0 99.6 98.3 0.81 97.5 93.1 87.9 8.83
-0.1 -0.3 100.0 99.8 9.1 0.92 97.2 92.7 88.2 10.10
00 03 95.1 87.4 80.3 0.95 97.4 91.2 84.8 4.39
01 03 95.9 88.6 81.7 1.02 97.5 91.3 85.2 4.44
00 -03 100.0 99.3 98.0 0.62 97.0 92.1 87.7 11.52
-0.1 -0.3 100.0 99.6 98.7 0.66 96.8 91.8 87.3 12.97
00 03 95.5 87.5 80.9 0.62 96.9 90.7 84.7 5.09
01 03 95.7 88.1 81.5 0.64 96.9 90.8 84.8 4.83

W W W W N N N N o

Note: Thistable reportsthe coverage probabilities of the t-statistic that tests whether the mean of y; isequal toitstruevalue. The
following dgp isused to generatethedata: ;=& +ne.s+meg =23, wheregisani.i.d standard normal random variable. x|
indicates the estimated bandwidth parameter. T = 128 and theresultsare based on 10,000 replications. Theresultsfor VARHAC are
givenintable5.
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Table 1 reports the average bandwidth parameter obtained by these methods, and
the resulting confidence interval for at-statistic to test whether the true mean is equal to
zero. It can be seen that the Newey-West procedure is better able to detect the higher-
order serial correlation, chooses a higher bandwidth parameter, and consequently has
better inference properties. Of course, the Andrews (1991) method might yield superior
properties in an example where the autocovariances decline gradually and monotonically.
In practice, of course, the properties of the true autocovariances are unknown, so that it is
probably unwise to rely on an arbitrary time-series model to determine the bandwidth
parameter used to obtain an estimated HAC covariance matrix. In particular, it seems
doubtful that the data-dependent bandwidth parameter should depend exclusively on the
first-order autocorrelations of the prewhitened residuals, when the resdual vector has
already been prewhitened by an AR(2) filter.

An alternative to these methods would be to use aformal procedure to select the
best parametric model for V(y ), and then to usethe estimates of S; and S\ implied
by thismodel. In this case, however, one might consider smply using the parametric
estimator of S; in constructing the HAC covariance matrix, rather than trying to
determine the data-dependent bandwidth parameter and then using a kernel-based
procedure. Thisissuewill be discussed further in Section 5.

Finally, this smulation experiment highlights the danger of viewing any particular
data-dependent bandwidth selection procedure as being fully “automatic”. As documented
in Table 1, the average bandwidth parameter chosen by QS-PW islessthan one. When
such alow bandwidth parameter is obtained for a sample of 128 observations, it would be
useful to check whether the resulting inferences are sensitive to an increase in the
bandwidth parameter. Even with a sample of thislength, it should be possible to estimate

more than one autocovariance with reasonabl e accuracy.

4.3.3 The Choice of W and the Costs of Imposing a Single Bandwidth Parameter .

As documented in equation (2.9), the optimality criterion used to derive the
optimal bandwidth parameter formula depends on a weighting matrix W. The weighting
matrix isvery important for the following reason. To ensure that the estimated covariance

matrix is positive semi-definite, a single bandwidth parameter must be chosen for the



entire vector V(y ;). Thus, the data-dependent bandwidth parameter must compromise
in evaluating the serial correlation properties of the various dementsof V(Y ;). In

particular, assigning more weight to specific dementsof V(y ;) influences the etimated

bandwidth parameter X .

Unfortunately, Andrews (1991), Andrews and Monahan (1992), and Newey and
West (1994) do not provide much guidance in choosing the weighting matrix W. In
simulation experiments, Andrews (1991) and Andrews and Monahan (1992) choose W
such that a unit weight is given to the N-1 diagonal elements of Sand S? that correspond
to the N-1 dope coefficients. All other elements of W are set equal to zero. The simulation
experiments of Newey and West (1994) assign unit weightsto all diagonal and off-
diagonal dementsof Sand S? that do not correspond to the intercept in the regression
model. In both cases, these weighting schemes work reasonably well, because the

dementsof V(y ;) have reasonably similar variance and autocorrelation properties.

In practice, however, using fixed equal weights can have very undesirable
consequences. Since the optimal bandwidth formulais designed to minimize the

asymptotic MSE, the dements of V (y ;) with the highest variance have the most influence
in determining the data-dependent bandwidth parameter. Thus, if a particular regressor is

rescaled, its sample variance will change, and the autocorrelation properties of that
variable will receive a different weight in determining the bandwidth parameter. We
illustrate this point with the following Monte Carlo experiment. Consider the ordinary

least-squares estimator for the following linear mode:

(4.2 yi = a + bz + g
(1-09L)ea = ey
X = €yt
z = | x,

wherea =b =0, e;; and &, arei.i.d. normally distributed random variables. The
parameter | scalesthe explanatory variable. The unconditional variance of  and x; is
equal to 1. Thetwo elements of the vector V; aree and | ex; . Thusthefirst dement is
afirst-order AR process, and the second element is serially uncorrelated. Varying the
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scale coefficient | is equivalent to expressing the explanatory variablein different
measurement units.

To highlight the fundamental point, we do not use the prewhitening option, since
first-order prewhitening would make both components close to white noise. For higher-
order processes of &, the kernel-based estimators would encounter the same limitations as
those discussed here. However, the discussion would be complicated by the
misspecification bias of the AR(1) coefficient in the prewhitening regression. Also,
because this issue does not depend on the procedure to estimate a(q), we only report the
results for the QS estimator of Andrews (1991).

Theory suggests that the choice of a smaller bandwidth parameter in this
experiment should improve the finite-sample behavior of the standard error for the ope
coefficient, while a larger bandwidth parameter will tend to improve the accuracy of
inferences concerning the regression intercept. Asindicated in Table 2, the results for the
QS estimator are highly sensitiveto thevalueof | . For the QS procedure, choosing a
larger value of | raises the weight on the second element of V;, reduces the average
bandwidth parameter chosen, and diminishes the accuracy of the estimated standard error
of theregression intercept. The average bandwidth parameter across Monte Carlo
replicationsis equal to 23.4, 2.3, and 1.7 for values of | equal to 1, 100, and 1000,
respectively. Asexpected, alarger value of | reduces the bandwidth parameter
and improves the behavior of the estimated standard error for the s ope coefficient.

Table 2: The Limitations of a Single Bandwidth Parameter (QS kernd).
a unit weight assigned to both diagonal dements.

a b Average
I 99% 95% 90% 99% 95% 90% )2 T
1 87.8 78.7 72.0 92.7 84.6 77.0 23.35
100 62.4 511 43.7 98.7 94.2 88.4 2.32

1000 56.6 45.2 38.4 98.7 94.4 88.9 1.70
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b: unit weight assigned only to the diagonal element of the corresponding parameter.

a b Average Xt
99% 95% 90% 99% 95% 90% a b
88.3 79.0 715 98.6 %.1 88.6 2326 1.70

Note: These tables report the 99%, 95%, and 90% confidence intervalsfor the t-statistics that test whether the least-squares estimates for
the congtant a and the dope b are equal toitstrue value. The dgp isgiven in equation 4.2. The parameter | isascaling variable. A higher
valuefor | meansthat the variance of the independent variable increases. x; indicates the estimated bandwidth parameter. T = 128 and
theresultsare based on 10,000 replications. Theresultsfor the VARHAC estimator arereported in table 7.

From thisexample, it is clear that a minimal requirement for the choice of Wis that
it should make the optimal bandwidth parameter scale-independent. However, it is not
clear how to do this. Den Haan and Levin (1994) consider the use of the inverse of the
unconditional covariance matrix and the inverse of the spectral density at frequency zero
for the choice of W.° 1t becomes somewhat more difficult to evaluate the optimal
bandwidth formulain equations (2.8) and (2.9) if a general weighting matrix is specified
instead of a vector of weights. Moreimportantly, while this approach resolves the scaling
problem, it cannot resolve the limitation that a single bandwidth parameter must be chosen

for the entire vector V(y ;) to ensure a positive semi-definite HAC covariance matrix.

Now suppose that the practitioner wishes to make inferences concerning asingle
parameter in alinear regression problem. In this case, the weighting matrix W can be

congtructed with unit weight assigned to the appropriate element of V(y ;) , and zero

weight assigned to all other elements. The results of this approach are reported in panel b
of Table2. Asdocumented in thetable, this procedure improves the results drastically.
However, it is clear that the approach of assigning positive weight to only one
element of W cannot always resolve the limitation of using a single bandwidth parameter.
For example, when standard errors are calculated for non-linear problems, the standard
error of each parameter typically depends on the entire spectral density matrix, including
both diagona and off-diagonal elements. Similar considerations apply when restrictions
involving several parameters are tested in alinear regression framework. Finally, when the

estimated spectral density matrix isused to construct an optimal weighting matrix to

19 T implement the second suggestion, a preliminary estimate has to be constructed for the spectral
density at frequency zero.
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obtain efficient GMM estimates, all dements of the spectral density matrix are used, so
that zero weight should not be assigned to any particular element. In general, therefore,
when the elements of V(y ;) have different serial correlation properties, the resulting
data-dependent bandwidth parameter and HAC covariance matrix will inevitably reflect

a somewhat unpleasant compromise.

4.4 Complicated serial correlation patterns and ker nel-based estimators.
Toillustrate several of the topics discussed in this section, we summarize the
results of a Monte Carlo experiment performed by Christiano and Den Haan (1996).

In this experiment, we consider the following dgp:

yA = 04z, + g,

(4.3 Wi = VY Tz, and
h
yi¥ = HP(L)y,

where g isan i.i.d. normally distributed variable with zero mean. HP(L) stands for the
Hodrick-Prescott filter, which is an approximate high-pass filter that removes spectral
components with cycles greater than 32 periods. Thus, the HP filter is commonly applied

to quarterly macroeconomic data to study the properties of business cycles.™

Figure 1: Autocorrelation coefficients of ( th”)2 :
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lag-order
Note: Thisgraph plotsthe autocorrelation function of (y{")2. Thelaw of motion for y™ isgiven in equation (4.3.)

We analyze the confidence intervals of the t-statistic that tests whether the
standard deviation of HP(L)y; is equal to its population value. Thus,

11 SeeKing and Rebelo (1993) and Christiano and Den Haan (1996) for a detailed discussion on the HP
filter.
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V(Y )= (Y™)?- (y ,)?. Asseenin Figure 1, the serial correation propertiesof V, (y )

are quite complicated.

Table 3: Inference in the presence of complicated serial corrdation(QS-PW and NW-PW).

aT=128.

bandwidth kernedl prewhitening 5% 10% 90%  95% average >2T

procedure order

Andrews QS 0 18.6 229 15.0 94 10.0

Andrews Bartlett 0 19.0 23.2 16.4 9.8 10.7
NW Bartlett 0 20.9 24.4 18.0 11.7 5.0

Andrews QS 1 12.0 17.3 5.0 13 2.96

Andrews Bartlett 1 12.1 17.5 55 16 3.26
NW Bartlett 1 16.7 20.5 9.3 51 13.05

Andrews QS 2 18.8 22.2 15.7 9.7 0.95

Andrews Bartlett 2 18.8 22.3 15.5 9.6 0.71
NW Bartlett 2 18.8 221 15.5 9.6 3.18

b: T = 1000.

bandwidth kernel prewhitening 5% 10% 90%  95% average >2T

procedure order

Andrews QS 0 8.6 154 12.6 6.8 17.30

Andrews Bartlett 0 9.0 15.5 13.0 7.1 24.26
NW Bartlett 0 111 17.7 15.2 9.0 11.79

Andrews QS 1 5.0 9.3 6.8 31 4.67

Andrews Bartlett 1 5.7 10.7 1.7 3.9 6.91
NW Bartlett 1 7.5 13.6 11.1 5.3 40.70

Andrews QS 2 10.8 17.3 15.1 9.1 0.98

Andrews Bartlett 2 10.8 174 15.0 9.2 0.74
NW Bartlett 2 10.7 17.3 15.0 9.1 5.86

Note: Thesetables report the coverage probabilities of the t-statistic that tests whether the standard deviation of i isequal toitstrue
vaue. The 5% (95%) and 10% (90%) columns report the frequency the t-gtatistic is less (higher) than the lower (upper) 5% and 10%
critical value. Thedgp for y™ isgiven by equation (4.3). Xt indicates the estimated bandwidth parameter. The results are based on
1,000 replications. The corresponding results for VARHAC arereported in table 6.

The methods of Andrews (1991) and Newey and West (1994) are used to
determine the data-dependent bandwidth parameter for the Bartlett and QS kernels, with

the use of an autoregressive prewhitening filter of order 0, 1, or 2. Table 3 summarizes
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theresults. From Table 3, we can make the following observations. First, as mentioned
above, theresults for the QS and Bartlett kernel are very similar. Second, the distribution
of thet-statistic is highly skewed. In fact, analyzing two-sided confidence intervals can
give amideading picture of the deviation of the t-gtatistic from its limiting distribution.
For example, when first-order prewhitening is used with the data-dependent bandwidth
method of Andrews (1991), the two-sided t test has an empirical size of 13.3% when the
nominal sizeis10%. However, thisempirical size conssts of 12.0% in the left tail and
1.3% in theright tail. Christiano and Den Haan (1996) document that this skewnessis
caused by the correlation between the estimated standard deviation and the spectral
estimate. This reveals one weakness of usng MSE as the underlying optimality criterion.
The practitioner who calculates a HAC covariance matrix is typically interested in drawing
accurate inferences about regression parameters rather than in the covariance matrix itsef.

Table 3 also contains some rather surprising results, which provide some useful
insight into the characteristics of kernel-based methods. First, compared with the absence
of prewhitening, the inference accuracy for two-sided tests improves dramatically with the
use of an AR(1) filter. Given the complicated pattern of serial correlation, one would
expect second-order prewhitening to yield further improvementsin performance, or
at least to provide about the same performance as first-order prewhitening. In fact,
however, inferences associated with the AR(2) filter are much less accurate than those
associated with the AR(2) filter, and are only dightly better than no prewhitening at all.

Second, the AR(1) filter yields a larger improvement in inference accuracy when
using Andrews  bandwidth selection method compared with the Newey-West method.
Thisresult is surprising because the AR(1) prewhitened residuals have relatively low first-
order autocorrelation but continue to have complicated higher-order autocorrelation. As
discussed in Section 4.3.2, we would expect the Newey-West method to detect the higher-
order seria correation more effectively than Andrews method, which only considers the
first-order autocorrelation.

Some insight into these findings can be obtained by constructing each kernd-based
estimator using the true autocovariances of HP(L)y: . At any given value of the bandwidth
parameter X, Figure 2a confirmsthat the Bartlett and QS kerndlsyield very smilar
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approximations to the true spectral dengity at frequency zero: i.e., the deviation between
S(x) and Soe(X) is always less than 10 percent of the value of S,

Figure 2a: Comparison of Bartlett and QS spectral estimators.
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Note: Thisgraph plots the difference between the Bartlett spectral estimator with bandwidth parameter x and the QS spectral estimator
with bandwidth parameter x asafraction of thetrue spectral density. The Bartlett and QS spectral estimator are calculated using the true
autocovariances of the GMM residual (™ ).

Figure 2b: Reative Bias of QS Spectral Estimator.

0.3

0.2 1 - first-order prewhitening

01T second-order prewhitening

0 f f f :

-0.3 1
no prewhitening
-0.4
-0.5
-0.6
0 10 20 30 40 50 60 70 80 90 100

BANDWIDTH PARAMETER, x

Note: Therdative bias of the QS spectral estimator isdefined as (Soe(X) - S /' S. Sog(X) isthe approximate spectral density (using the true
autocovariances) of the GMM residual (y" )? based on theindicated prewhitening filter, the QS kernel, and the bandwidth parameter x.
Asx® ¥, S(x) ® S and therdative bias shrinksto zero.

Figure 2b indicates that the prewhitening order and the choice of bandwidth
parameter dramatically influence therdative bias, (Sog(x) - S /' S. In the absence of
prewhitening, the QS kernel generally underestimates the true spectral density, and afairly
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large bandwidth parameter (higher than 20) is required to achieve reative bias of less than
10 percent. Thus, the severe size distortions in the first three rows of Table 3a can be
partly explained by the use of arelatively low bandwidth parameter, with an average value
of about 10 for Andrews (1991) method and only 5 for the Newey-West (1994) method.
Asseen in Table 3b, increasing the sample length from T=128 to T=1000 causes a
doubling of the average bandwidth parameter, thereby reducing the bias of the kernd
estimator and improving the accuracy of subsequent inferences. Similar results may be
observed when second-order prewhitening is performed.

In contrast, first-order prewhitening induces a very different pattern of bias.
When the bandwidth parameter is less than about 5, the QS kernd approximation (based
on the true autocovariances) over-estimates the true spectral density by up to 35 percent.
For larger bandwidth parameters, the relative biasis always less than 10 percent in
absolute value. The middle three rows of Table 3aindicate that Andrews (1991)
bandwidth selection procedure yields an average bandwidth parameter of about 3, whereas
the Newey-West (1994) method yields a much higher average bandwidth parameter of
about 13. Thus, one would expect the Newey-West estimator to yield more accurate
inferences than the Andrews estimator, but in fact, the oppositeistrue. Christiano and
Den Haan (1996) have shown that the sample autocovariances of HP(L)y: exhibit
substantial downward bias for T=128, which coincidentally offsets the upward bias
induced by alow bandwidth parameter (as chosen by Andrews method), and exacerbates
the downward bias induced by a high bandwidth parameter (as chosen by the Newey-West
method). Thisresult is clearly rather specific to this particular dgp, but is useful for
illustrating the factors that can affect the finite-sample performance of alternative spectral
estimators.

4.5 Non-parametric estimation without a kernel.

We conclude this section on non-parametric procedures by discussing the R95
estimator proposed by Robinson (1995). Recall that the R95 estimator calculates the
spectral density of avector V, that can be written as u, Ax. To analyze the small sample
properties of this estimator in conducting inferences, we estimate the covariance of u; and

X when the data are generated by the following dgp:
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z; = 04z, +¢,

X, = B'Y(L)z, i={HP,D
z' = 04z, +e,
(4.4) u = Bz [Z| il {03,i={HP,D}
gre = HP(L)
1- L
B° = 1

where ¢ and e’ arei.i.d N(0,1) random variables. Notethat when | isequal to one, the
distribution of u; is heteroskedastic (condition (2.31) is not satisfied) and when j isequal

to zero, then u, is homoskedastic (condition (2.31) is satisfied). When the B filter

is used, the product V; displays a fairly smple pattern of seria correlation pattern, whereas
the B filter generates relatively complicated serial correlation.

Table 4 reports the confidence interval s obtained for atest of the null hypothesis of
no covariance between u; and X, . The R95 estimator is compared with the QS estimator
of Andrews (1991) without prewhitening. For thisexample, the results for the estimator
without prewhitening turned out to be somewhat better than the results with first-order or
second-order prewnhitening.

First, consider the case with no heteroskedasticity. Both estimators provide
reasonably accurate inferences when the degree of serial correation isrelatively limited
(for the BP filtered data) or when the sampleisrelatively large (T = 1000). However,
when the sampleisreativey smal (T = 128) and the data display the complicated serial
correlation pattern induced by the B filter, the R95 estimator clearly outperforms the
kernd-based estimator. For example, the R95 estimator yields a 10.8% empirical size for
atwo-sided test with a 10% nominal size, compared with the 23.2% empirical size of the
kernel-based estimator.

In contrast, when the data exhibit heteroskedasticity, the R95 estimator yields
much less accurate inferences, whereas the inference accuracy of the kernel-based
estimator is not affected very much. When the B filter is used, the ability of the R95 to
capture complicated patterns of serial correlation is offset by itsinability to adjust for
heteroskedagticity. When the B filter is used, the accuracy of inferencesis dominated by
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the effects of the heteroskedasticity. Unfortunately, in the presence of heteroskedasticity,
the inference accuracy of the R95 estimator does not seem to improve in larger samples:
the confidence intervals for the R95 estimator are as distorted for T = 1,000 as for T= 128.

Table 4: Non-parametric estimation without a kernel.
a Without Heteroskedasticity.

T serial estimation kernel  prewhitening 5% 10% 90% 95%  average
correlation  procedure order >2T
128 BP Andrews Qs 0 61 11.8 11.7 59 2.4
128 BP Robinson - - 51 99 104 54 -
129 B Andrews Qs 0 101 159 195 131 104
128 B Robinson - - 46 101 129 6.2 -
1000 BP Andrews Qs 0 54 100 102 47 3.8
1000 BP Robinson - - 51 93 96 43
1000 B Andrews Qs 0 59 109 156 9.0 17.3
1000 B Robinson - - 37 82 117 60

b: With Heteroskedasticity.

T serial estimation kernel  prewhitening 5% 10% 90% 95%  average
correlation  procedure order >2T
128 BP Andrews Qs 0 63 120 11.3 59 2.4
128 BP Robinson - - 189 251 238 175 -
128 B Andrews Qs 0 106 168 192 126 111
128 B Robinson - - 102 16.4 185 116 -
1000 BP Andrews Qs 0 54 102 105 55 35
1000 BP Robinson - - 180 234 239 185
1000 B Andrews Qs 0 60 109 139 83 18.9
1000 B Robinson - - 102 160 183 11.9

Note: Thistables reports the coverage probabilities of the t-statistic that tests whether the covariance of u; and x; isequal toitstrue value
of zero. The 5% (95%) and 10% (90%) columns report the frequency the t-statistic isless (higher) than the lower (upper) 5% and 10%
critical value. Thedgp for y"™ isgiven by equation 4.4. X indicates the estimated bandwidth parameter. The results are based on 3,000
replications



5. CHOICESFOR PARAMETRIC ESTIMATORS.

In this section, we analyze the choices required to implement a parametric spectral
estimator. Section 5.1 considers the choice of a class of parametric models. Section 5.2
evaluates the properties of alternative modd selection criteria. Section 5.3 documents the
advantages of being able to seect a different lag-order for each element of V;. Finadly,
Section 5.4 considers the potential benefits and pitfalls of applying a kernel-based spectral
estimator to the residuals of a parametric model that has been chosen by a model selection
criterion, as proposed by Lee and Phillips (1994).

5.1 The Class of Admissible M odels.

In some empirical problems, the regression residuals are assumed to be generated
by a specific parametric modd. In arational expectations model, for example, the Euler
equation residuals typically follow a specific moving-average (MA) process of known
finite order. For these cases, the practitioner can utilize the procedures of Eichenbaum,
Hansen, and Singleton (1988) and West (1994). These procedures yidd consistent
covariance matrix estimates when the regression residuals are generated by an MA(Q)
process for which the finite order q isknown a priori. Furthermore, West's (1994)
estimator converges at the rate T ™2, and in contrast to the truncated kernel estimator,
is guaranteed to be positive semi-definite.

In general, however, the dgp of the regression resdualsis not known a priori.

In this case, the practitioner must use some criterion to select a particular model from a
prespecified class of parametric models. Ideally, one would like to search within the class
of finite-order ARMA models, as Lee and Phillips (1994) consder in estimating the
spectral density of ascalar process. In the multivariate context, however, vector ARMA
estimation and modd selection istypically highly computationally intensive and often
subject to convergence failure or other numerical problems.

In contrast, VAR estimation and model selection can usually be implemented fairly
easly at low computational cost. Den Haan and Levin (1994) have shown that VAR
approximation yields a consstent covariance matrix estimate under very general
conditions. For example, the regression residuals do not have to follow a finite-order

vector ARMA process, or even be covariance stationary. Furthermore, as discussed in
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Sections 3.4 and 3.5 above, the VAR spectral estimator converges at afaster rate than any
positive semi-definite kernel-based estimator. In particular, if the residual vector does
follow afinite-order MA or ARMA process, the VAR spectral estimator converges at a
geometric rate arbitrarily closeto T™Y4 Thus, restricting consideration to the class of
VAR modd s rather than the more general class of vector ARMA models has an
asymptotically negligible cost in MSE.

Even when consideration islimited to the class of VAR processes, the number of
admissible models can ill be very large. In estimating each VAR equation, one can alow
adifferent lag order for each variable. However, this approach requires the estimation of

(K+1DN aternative formulations of the equation, which is only computationally feasible

if the dimension N and the maximum lag order K are fairly small. For each equation, these
computational requirements can be reduced by imposing the same lag order for all
variables, or by imposing asingle lag order for all variables except the lagged dependent
variable. Asshown in the next subsection, allowing the lag order to vary across equations
can yield substantial benefitsin finite samples. In rdatively high-dimensiona systems,
however, one may wish to restrict attention to the class of VAR modelsin which asingle

lag order isused for the entire system.

5.2 Model Selection Criteria.
Asoutlined in Judge et al. (1985, pp. 240-247), a number of different model

selection criteria can be expressed in the following form:
(5.1 Wer = V\'(ST,K , K)’

where Stk isthe estimated innovation variance of the model with K free parameters.

For example, Aikaike' s (1973) Information Criterion (AIC) setsWk+ = log( Sr)
+ 2K/T. If thetrue dgp isan AR(p,) process for some finite p,, then asymptotically AIC
will select alag order p, £ p £ po + ¢ with probability 1 for some positive constant c.
Shibata (1976) has demonstrated that AIC isnot a consistent model selection criterion,
but overestimates the true lag order with positive probability, even as the sample length
grows arbitrarily large. However, the probability of choosing an order p > p, decreases
rapidly with p (cf. Shibata 1976; Lltkepohl 1985). Furthermore, for lags greater than p.,
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the AR coefficients converge in probability to zero as the sample length grows large.
Thus, the inconsistency of AIC uses up afinite number of extra degrees of freedom, but
does not affect the consistency or convergence rate of the AR spectral estimator. Finaly,
if thetrue dgp isan AR(¥) process with i.i.d. Gaussian innovations, then Shibata (1980,
1981) finds that AlC selects the asymptotically optimal growth rate for the AR lag order.

Schwarz' (1989) Bayesian Information Criterion (BIC) setsWkt = log( Stk)

+ 2K 1og(T)/T. Thus, BIC assigns a higher penalty than AIC for additional parameters, so
that the lag order chosen by BIC is always less than or equal to that chosen by AIC. BIC
has been shown to be a consistent model selection criterion when the true dgp is afinite-
order AR or finite-order ARMA process. Furthermore, in simulation experiments
comparing a variety of modd selection criteria, Liitkepohl (1985) reports that BIC
achieves the best performance in choosing the correct AR order and minimizing the mean-
sguared forecasting error. Asdiscussed in Section 3.5, there is also some asymptotic
justification for using BIC rather than AIC in AR spectral estimation, especially for dgps
with unknown heteroskedasticity and temporal dependence. Nevertheless, smulation
experiments performed by Den Haan and Levin (1994) indicate that parametric HAC
covariance matrix estimates based on either AIC or BIC yield relatively smilar inference
properties for awide variety of dgps.

More generally, the optimality criterion in equation (5.1) is designed to capture the
tradeoff between parsmony and goodness-of-fit in finite samples. Nevertheless, this
criterion focuses on minimizing the innovation variance, which is not the only sample
satistic which isrelevant for spectral estimation. A parametric spectral estimator also
requires an accurate estimate of the sum of AR coefficients (and an estimate of the sum of
MA coefficients for ARMA spectral estimation). Thus, amode selection criterion which
efficiently chooses the correct order or minimizes the innovation variance does not
necessarily yield the best spectral estimate.
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5.2.1 AR approximation of afinite-order M A processes.
Severa of these issues can beillustrated using the experimental design considered

in Section 4.3.2, in which we estimate the mean of the following scalar process:

Q
(5.2) Y. =a+ an,e., ad y =—T—,
q=1

wheree isani.i.d. normally distributed random variable with zero mean and unit
variance. Thisexperimental design shedslight on the extent to which an AR mode can be
used to capture afinite-order MA process, and provides a useful comparison of AIC and
BIC. Table 5 reports the average lag order chosen by AIC and BIC for thisdgp, and the
implied confidence intervals for the test statistic of the null hypothesis of a zero mean,
using the parametric variance estimator constructed using each model selection criterion.
In particular, AR[AIC] refersto the VARHAC estimator constructed using the lag order
chosen by AIC, while AR[BIC] refers to the estimator constructed using BIC.

Table5: VARHAC inferences for finite-order MA processes.

ARTAIC] Average AR [BIC] Average

n m 99% 95% 90% K; 99% 95% 90% K;

00 -03| 987 94.9 90.3 255 99.4 96.9 93.8 1.25
-0.1 -03 | 99.0 95.7 91.4 2.70 99.6 97.7 95.1 1.39
00 03] 979 92.9 87.8 252 97.4 91.9 86.5 112
01 03| 977 92.8 87.8 2.60 96.9 91.7 86.2 1.20
00 -03| 991 96.0 91.9 2.90 99.5 97.9 95.2 1.10
-0.1 -03 | 99.2 96.7 93.3 3.05 99.6 98.4 96.4 1.25
00 03| 978 92.8 88.4 2.82 96.5 90.1 84.2 091
01 03| 978 92.8 88.1 2.95 96.0 89.0 83.3 1.00

W W W W N N N N2

Note: Thistable reportsthe coverage probabilities of the t-statistic that tests whether the mean of y; isequal toitstruevalue. The
following dgp isused to generatethedata: Y =& +ne.+me, (=23, wheregisani.i.d standard normal random variable. The
samplelength T =128, and theresults are based on 10,000 replications. The maximum AR lag order isequal to 5. AR[AIC] refersto the
VARHAC estimator constructed using thelag order chosen by AIC, while AR[BIC] refersto the estimator constructed using BIC. KT
indicates the chosen lag order. The corresponding results for QS-PW and NW-PW arereported in table 1.

Since the true autocovariances vanish beyond lag 2 or 3, one might expect that
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a kernel-based spectral estimator would outperform the parametric AR estimator,
regardless of the choice of model sdlection criterion. In fact, a comparison of Tables 1
and 5 demonstrates that both the AR[AIC] and AR[BIC] estimators yield more accurate
confidence intervals than the kernel-based estimator of Andrews (1991). Compared with
the kernel-based procedure of Newey and West (1994), the inference accuracy associated
with the AR[AIC] estimator is clearly superior, while the accuracy of the AR[BIC]
estimator isroughly smilar. In effect, this experiment reveals the cost of ensuring a
positive semi-definite kernel estimate, as discussed in Sections 3.2 and 3.4: by assigning
welights substantially less than unity to the second-order and third-order autocovariances,
the kernel-based estimators exhibit substantially more bias than the AR[AIC] estimator.
Nevertheless, the choice of model selection criterion has a substantial impact on
the behavior of the AR spectral estimator in this experiment. Asseenin Table5, the
average AR order chosen by AIC is generally one or two lags higher than the average AR
order chosen by BIC. For example, consider the casewhenn =0, m=-0.3,and g = 2.
In this case, AIC chooses an AR order less than two in about 6 percent of the smulations,
whereas BIC chooses a zero lag order in about 40 percent of the ssmulations, and almost
never chooses alag order equal to one. This experiment reveals the finite-sample
conseguences of achieving consistent lag order selection: duetoitsredatively high penalty
term, BIC often selects an AR lag order which istoo low to achieve a satisfactory

approximation of alow-order MA process.

5.2.2 AR approximation of a process with complicated serial correlation.

The experimental design considered in Section 4.4 can aso be used to compare the
properties of AIC and BIC. Recall from Figure 1 that the autocorrelations of the process
(yf*)? decline dowly and non-monatonically, so that this dgp is useful for analyzing the

extent to which an AR approximation provides a reasonable spectral density estimate for a
process with general temporal dependence.
The bold curve in Figure 3 depicts the AR(h) approximation (for h = 1,...,40)
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of the spectral density at frequency zero of (y™)?, where the popul ation moments are

used to cal culate the AR(h) coefficients and the innovation variance.” Figure 3 also
plots the values of AIC and BIC using the innovation variance implied by the AR(h)
approximation. The penalty terms are based on a sample length of 1000 observations.

Figure 3: Modd Sdection Criteria and Autoregressive Spectra.
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Note: Thisfigureindicates the population value of the AR spectral density approximation using different lag-orders. It also depictsthe
population values of AIC and BIC using the innovation variance implied by an AR(h), again using population moments. The penalty
terms are based on a samplelength of 1000 observations. The population moments are computed using estimated val ues from a sample of
100,000 observations. The underlying seriesisthe square of the random variable specified in equation 4.3.

As documented in Figure 3, neither AIC nor BIC is an optimal finite-sample lag
order sdection criterion in estimating the spectral density at frequency zero. Both model
sdlection criteriareach a minimum when the AR lag order is equal to two. Such alow lag

order, however, leads to a strong downward bias for the spectral density estimate.
For this particular dgp, 1 - & ,il A, isrdatively small, and the square of thisterm shows

up in the denominator of the definition of the spectral estimate. Therefore, small changes
in the sum of the AR coefficients have alarge influence on the spectral density estimate.

Table 6 reports the results of using the AR spectral estimator to provide inferences
about the standard deviation of y». Comparison with Table 3 indicates that the

confidence intervalsimplied by the AR spectral estimator are quite smilar to thoseimplied

12 The population moments are computed using estimated values from a sample of 100,000 observations.
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by the kernel-based estimators: i.e., the distribution of the test statistic is skewed, and the
tails aretoo thick relative to the limiting distribution. Thus, even for sample lengths up to
T = 1000, neither parametric nor kernel-based spectral estimators appear to be very
successful in capturing the complicated pattern of temporal dependence.

Table 6: Inference in the presence of complicated serial correation (VARHAC).
aT=128.

model maximum 5% 10% 90%  95% Average
selection lag order KT
AlC 4 16.2 20.6 15.0 8.7 2.35
AlC 8 16.10 20.9 14.7 8.6 2.78
BIC 4 16.5 20.3 14.9 8.8 1.92
BIC 8 16.6 20.9 15.5 9.2 1.93

b: T = 1000.

model maximum 5% 10% 90%  95% Average
selection lag order KT
AlC 10 10.0 14.5 12.5 7.2 4.48
AlC 20 9.9 14.4 12.0 6.7 5.58
BIC 10 11.0 16.2 14.8 8.7 2.05
BIC 20 11.0 16.5 15.3 8.9 2.05

Note: Thesetables report the coverage probabilities of the t-statistic that tests whether the standard deviation of y;™ isequal toitstrue
vaue. The 5% (95%) and 10% (90%) columns report the frequency the t-gtatistic is less (higher) than the lower (upper) 5% and 10%
critical value. Thedgp for y"™ isgiven by equation 4.3. KT indicates the chosen lag order. The results are based on 1,000 replications
The corresponding results for QS-PW and NW-PW are given in Table 3.

Finally, it should be noted that the resultsin Table 6 are not sensitive to the choice
of the maximum lag order. Thisisimportant, since no criterion is currently available to
select the maximum lag order in afinite sample: the asymptotic theory smply prescribes a
maximum rate at which it can grow as a function of the sample length. Adding a constant
to the maximum lag order does not change any of the asymptotic properties and, at least in
this smulation experiment, has little influence on the empirical distribution of the
t-statistic.
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5.3. The Advantages of Different Lag Orders.

Section 4 highlighted the finite-sample limitations of imposing a single bandwidth
for the entire vector of residuals V;. Recall that the only reason for thisrestriction isto
ensure that the estimated covariance matrix is positive semi-definite. In contrast, the
spectral density matrix of a parametric estimator is positive semi-definite by construction.
Thus, parametric estimators do not have to compromise in evaluating the serial correlation
properties of the e ements of V;, but amodel selection criterion can be used to determine
the appropriate lag order for each individual element of V;. That is, if the modd selection
criterion detects high-order autocorrelation in an element of V; , then a high lag order will
be chosen for that particular eement.

We illustrate this advantage of parametric spectral estimators using the
experimental design presented in Section 4.3.3. Theimplied confidence intervals are
shown in Table 6. Compared with the kernel-based results reported in Table 23, it can be
seen that the VARHAC procedure yields much more accurate confidence intervals,
especially for the slope coefficient. Table 6b indicates that both AIC and BIC almost never
choose a zero lag order for the equation corresponding to the regression intercept, where
the dependent variableis highly persistent. In contrast, AIC and BIC choose a zero lag
order in about 88 and 50 percent of replications, respectively, for the equation

corresponding to the dope coefficient, where the dependent variable is white noise.

Table 7: The Bendfits of Using Different Lag Orders (VARHACQC).

a confidence intervals.

BIC AlC
parameter 99% 95% 90% 99% 95% 90%
intercept 93.4 86.5 80.5 93.4 86.3 80.4
slope 98.8 95.0 90.1 98.5 94.5 89.3

b: frequency autoregressive lag orders chosen (percentages).

e ement of V, BIC AIC
correspondingto] O 1 2 3 4 0 1 2 3 4
intercept 0 9850 142 007 0.01 0 7844 1275 529 352
dope 8841 1024 114 019 002 | 4956 2517 1205 6.9 6.26

Note: Panel a reports the 99%, 95%, and 90% confidence intervals constructed using the VARHAC estimator for thet-statistics that test
whether the least-squares estimates for the intercept a and the dope coefficient b are equal to their true values. Thedgp isgivenin
equation 4.2. Thesamplelength T = 128, and the results are based on 10,000 replications. KT indicates the chosen lag order. The
maximum lag order isequal to 4. Panel b reportsthelag orders chosen by the indicated model selection criterion. The corresponding
results for kernel-based estimatorsre reported in Table 2.
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5.4 Applying a Kernel-Based Spectral Estimator to Prewhitened Residuals.
In this section, we outline some important issues which have been stimulated by

thework of Lee and Phillips (1994), and which deserve to be examined in greater detail in
subsequent research. It isuseful to consider the potential benefits and pitfalls of applying
a kernel-based estimator to the residuals of a parametric model, as outlined for the PL
procedure discussed in Section 2.4. If the parametric lag order is high enough to remove
al serial corrdation, then a non-parametric correction for serial correlation of the
prewhitened residuals must smply increase the variance of the final spectral estimate.
However, if the residuals display negligible seria corrdation, then the data-dependent
bandwidth selection procedure of Andrews (1991) may be expected to yield arelatively
low bandwidth parameter, so that the kernel-based spectral estimator is nearly identical to
the estimated innovation variance of the parametric modd. In this case, applying a kernel-
based procedure to the prewhitened residual s would tend to have negligible influence on
the MSE of the final spectral estimate. In contrast, when the parametric model is not very
effective in removing serial correlation, applying a kernel-based estimator to the
prewhitened residuals may yied substantial benefits.

Thus, the class of admissible models and the criterion used to select a particular
mode are likdly to be important in determining the benefits of applying a kerne-based
estimator to theresiduals. As seen in the smulation experiment reported in Section 5.2.2,
the AR lag order chosen by AIC isreasonably effective in approximating alow-order MA
process, whereas the lag order chosen by BIC tends to be too conservative. Thus, at least
in this case, applying a kernel-based spectral estimator to the prewhitened residuals may be
more advantageous when the parametric modd is chosen by BIC rather than AIC.

When the practitioner applies a kernel-based spectral estimator to the prewhitened
resduals, particular care should be given to the method of determining the bandwidth
parameter. For example, when an ARMA modd is used to prewhiten the data, any
remaining seria correation will typically be exhibited at relatively long lag lengths.

The data-dependent bandwidth selection procedure of Andrews (1991), which only
considers the first-order autocorrelation, would appear to be unlikely to detect this form
of serial correation. Asdiscussed in Section 4.3.2, the bandwidth selection procedure of
Newey and West (1994) considers a larger number of autocovariances, making it
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somewhat more effective in detecting higher-order serial correlation. However, when the
parametric modd has successfully prewhitened the residuals, this feature may generate a

high bandwidth parameter and induce excessive sampling variation.

6. CONCLUDING COMMENTS.

Kerned-based and parametric covariance matrix estimation procedures are both
cons stent under fairly general conditions of heteroskedasticity and serial correlation.
Nevertheless, each procedure requires the practitioner to make choices which have
important implicationsin finite samples. Since the estimated HAC covariance matrix
can be very sensitive to the method of determining the bandwidth parameter (for a kernel-
based procedure) or the lag order (for a parametric procedure), it would generally be
appropriate to utilize more than one approach in estimating the covariance matrix.
Fortunatdly, as seen in Section 2, a number of alternative procedures are available
for this purpose. However, if only a single HAC covariance matrix estimation procedure
isto be used, we would recommend the parametric approach for the following reasons:

(1) The parametric VAR or ARMA estimation procedures can utilize a measure of
the goodness-of-fit in determining the appropriate lag order in finite samples.

In particular, amodel selection criterion can be used to eval uate the tradeoff between
parsimony and goodness-of-fit. Such criteria do not necessarily yield the optimal lag
order, but seem to avoid the most egregious errorsin practical applications.

In contrast, data-dependent bandwidth selection methods require the cal culation of
initial estimates of the spectral density and itsfirst or second derivative at frequency zero.
As documented in Section 4.3, poor initial spectral estimates can lead to rather absurd
values for the bandwidth parameter, inducing excessive bias and/or variance of the kerne -
based covariance matrix estimate, and severe distortions in subsequent inference.

(2) Kernd-based estimators incur substantial bias to ensure a positive semi-
definite covariance matrix: weights less than unity are assigned to autocovariances at lags
less than the bandwidth parameter, with the weights declining toward zero asthe
autocovariance lag increases. In contrast, the VARHAC estimator exhibits essentially
the same bias as the truncated kernel estimator, which places unit weight on all

autocovariances up to the bandwidth parameter. However, the truncated kernel does not



ensure a positive semi-definite covariance matrix, whereas the VARHAC estimator is
positive semi-definite by congtruction. Thus, as discussed in Section 3, the VARHAC
estimator converges to the true covariance matrix at afaster rate than any positive semi-
definite kernel-based estimator. This bias differential isaso evident in the simulation
experiments reported in Sections 4.3.2 and 5.2.1: even for alow-order MA process, the
AR spectral estimator provides a better approximation than the kernel-based estimators.
(3 Toensurethat the estimated covariance matrix is positive semi-definite,
kernel-based procedures must utilize a single bandwidth parameter in calculating all
elements of the spectral density matrix at frequency zero. If some components of the
vector of residuals exhibit high-order autocorrelation, while other components are close to
white noise, then imposing the same bandwidth for both sets of variables tendsto generate
very ill-behaved estimates of the spectral density matrix at frequency zero.
In contrast, parametric estimators do not face such an unpleasant compromise: a different
lag order can be chosen for each component of the residual vector, since the parametric

estimator of the spectral density matrix is positive semi-definite by construction.
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