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1. INTRODUCTION.

In many structural economic or time-series models, the errors may have

heterogeneity and temporal dependence of unknown form.  Thus, to draw more accurate

inferences from estimated parameters, it has become increasingly common to construct

test statistics using a heteroskedasticity and autocorrelation consistent (HAC) or “robust”

covariance matrix. Since the estimated covariance matrix approaches a constant value

as the sample length becomes arbitrarily large, the test statistic typically has a standard

normal or chi-squared limiting distribution, which is used in constructing confidence

intervals and performing hypothesis tests.

However, to the extent that the estimated HAC covariance matrix exhibits

substantial mean-squared error (MSE) in finite samples, the resulting inferences may be

severely distorted.  For example, substantial variation in the estimated standard error

generally causes a t-statistic to take large values (in absolute terms) more frequently than

predicted by the limiting standard normal distribution, thereby leading to a tendency to

over-reject the null hypothesis in a two-sided test.  Other distortions in inference can result

when the standard error exhibits bias, skewness, and/or correlation with the estimated

model parameter.

The key step in constructing a HAC covariance matrix is to estimate the spectral

density matrix at frequency zero of a vector of residual terms.  In some empirical

problems, the regression residuals are assumed to be generated by a specific parametric

model.  In a rational expectations model, for example, the Euler equation residuals

typically follow a specific moving-average (MA) process of known finite order.

For these cases, the practitioner can utilize the spectral estimation procedures of

Eichenbaum, Hansen, and Singleton (1988) and West (1994)   to obtain a consistent

estimate of the covariance matrix.  In the more general case where the regression residuals

can possess heteroskedasticity and temporal dependence of unknown form, existing results

in the spectral density estimation literature (cf. Parzen 1957; Priestley 1982) have

contributed to the rapid development of HAC covariance matrix estimation procedures

(e.g., White 1984; Gallant 1987; Newey and West 1987, 1994; Gallant and White 1988;

Andrews 1991; Robinson 1991; Andrews and Monahan 1992, Den Haan

and Levin 1994; and Lee and Phillips 1994).
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These HAC covariance matrix estimation procedures may be classified into two

broad categories:  non-parametric kernel-based procedures, and parametric procedures.

Each kernel-based procedure uses a weighted sum of the autocovariances to estimate the

spectral density at frequency zero, where the weights are determined by the kernel and the

bandwidth parameter.  Each parametric procedure estimates a time-series model and then

constructs the spectral density at frequency zero that is implied by this model.  As shown

in Den Haan and Levin (1994), a parametric spectral estimator is consistent under very

general conditions similar to those used in the literature to prove consistency of kernel-

based estimators.  Furthermore, when the sequence of autocovariances satisfy a standard

invertibility condition, the parametric VAR estimator converges at a faster rate than any

positive semi-definite kernel-based estimator.

To implement a kernel-based procedure, the practitioner must choose a particular

kernel, a bandwidth selection method, and a prewhitening filter.  To implement a

parametric procedure, the practitioner must choose a class of admissible models and a

criterion to select a particular model within this class.   Simulation experiments indicate

that these choices can have important implications for the accuracy of inferences based on

the estimated HAC covariance matrix.  Thus, rather than viewing any of these procedures

as fully “automatic,” a combination of diagnostic statistics and common sense should be

regarded as essential in practical applications.

Although we focus in this paper on the properties of HAC estimators for

conducting inferences, the spectral estimators discussed in this paper are used in many

other econometric procedures.  For example, the Phillips-Perron unit root test requires

a HAC estimator of the spectral density of the first difference.  A HAC spectral density

estimator is also needed to construct efficient GMM parameter estimates in the case of

overidentifying assumptions.  For these exercises one only needs the spectral density at

frequency zero.  The techniques discussed in this paper, however, can easily be used to

estimate the spectral density at other frequencies.1

                                                       
1   See Robinson (1991) for an alternative procedure to estimate the spectrum over a range of frequencies
and for econometric problems that require estimates of the spectrum over a range of frequencies.



3

The remainder of this paper is organized as follows. Section 2 gives step-by-step

descriptions of five HAC covariance matrix estimation procedures:  the kernel-based

procedures proposed by Andrews and Monahan (1992) and Newey and West (1994);

the parametric estimators proposed by Den Haan and Levin (1994) and Lee and Phillips

(1994); and the non-smoothed non-parametric estimator proposed by Robinson (1995).

Section 3 compares the asymptotic properties of kernel-based and parametric estimation

procedures.  Sections 4 and 5 analyse the choices faced by a researcher in implementing

kernel-based procedures and parametric procedures, respectively.  Section 6 provides

some concluding remarks.
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2. HAC COVARIANCE MATRIX ESTIMATORS STEP BY STEP.

In many estimation problems, a parameter estimate $ψ T  for a p×1 vector ψ 0

is obtained from the sample analog of a set of moment conditions, such as E Vt(ψ 0) = 0,

where Vt(ψ 0) is an N×1 vector of residual terms with N ≥ p.  This orthogonality condition

is often used to motivate the following estimator of ψ 0:

(2.1) $ψ T   = argminψ  V′T FT VT,

where VT = =∑ V Ttt
T ( ) /` ψ1  is the vector of sample moments of Vt(ψ ) and FT  is an N×N

(possibly) random, symmetric weighting matrix (cf. Hansen 1982). When N = p, then the

results are invariant to the choice of the weighting matrix FT .  In this case,2 the parameter

$ψ T , under regularity conditions, has the following limiting distribution:

(2.2) [ ] ( )D S D T IT N
− − − − →1 1 1 2 1 2

0 0' $ ( , )
/ / ψ ψ N

as the sample size T →  ∞ , where S is the spectral density at frequency zero of V ( )ψ 0 , IN

is the N×N identity matrix, and the N×p matrix D is defined as follows:

(2.3) D
Vt=











=

E
∂ ψ

∂ψ ψ ψ

( )
'

0

,

Usually, D  is estimated by its sample analog DT( $ψ T ) and DT( $ψ T )-D →  0 in probability as

T→ ∞ .

Two different approaches have been followed in the literature to estimate the

spectral density of an N×1  random vector Vt.  Non-parametric or kernel-based estimators

have the following form:

(2.4) ~ ( ) ~S
j

T
np

T
jj T

T= =− +
−∑ κ

ξ
Γ1

1 ,

where κ(⋅) is a weighting function (kernel) and ξ is a  bandwidth  parameter.  Also,

                                                       
2   The general formula for the asymptotic covariance matrix is (D′TFT DT)-1 D′T FT ST FT DT (D′T FT DT) -1.
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(2.5) ~ 'Γj t t jt
T j

T
V V= +=

−∑1
1 ,   j = 0, L  ,T-1,

and

              ~ ~'Γ Γj j= − ,  j = -1,-2, L ,-T+1.

Two widely-used kernels are defined as follows:

Bartlett Kernel: κ( )x
x= − ≤



1 1
0

  for x
       otherwise

  .

Quadratic Spectral (QS) Kernel: κ
π

π
π

πQS x
x

x
x

x( )
sin( / )

/
cos( / )= −





25
12

6 5
6 5

6 52 2 .

In contrast, parametric estimators use the spectral density implied by a particular

time-series model for Vt.  For example, suppose that Vt is modeled as a VARMA(p,q)

process.  Let Ak  be the matrix of k-th order AR coefficients, and let Bk  be the matrix of

k-th order MA coefficients.  Define the N×1 vector e V A Bt t kk
p

kk
q as − −= =∑ ∑1 1 , and let

~ 'Σ T t tt k
T e e= = +∑ 1  be the innovation variance.  Then the parametric spectral estimator is

given by:

(2.6) [ ] [ ] [ ][ ]~ ~ ' 'S I A I B I B I AT
par

N kk
p

N kk
q

T N kk
q

N kk
p= − + + −=

−

= = =

−
∑ ∑ ∑ ∑1

1

1 1 1

1
Σ .

In this section, we give a step-by-step description of five procedures to estimate

the spectral density at frequency zero of Vt(ψ 0) using a time series of the estimated

residuals Vt( $ψ T ) of length T.  The five procedures are:  (1) QS-PW, the kernel-based

estimator of Andrews and Monahan (1992); (2) NW-PW, the kernel-based estimator of

Newey and West (1994); (3) VARHAC, the parametric VAR estimator of Den Haan and

Levin (1994); (4) PL, the estimator of Lee and Phillips (1994); and (5) R95, the non-

parametric estimator of Robinson (1995), R95.  Lee and Phillips (1994) consider the case

where Vt(ψ 0) is a scalar, while the other four papers consider the vector case.  In this

section, we describe how these estimators have been used by the authors who proposed
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them.  With the exception of the R95 estimator, some choices are required to implement

each procedure.  The implications of these choices will be analyzed in Sections 4 and 5.

2.1 The QS-PW estimator.

The QS-PW estimator from Andrews and Monahan (1992) applies a prewhitening

AR filter of order b before the kernel-based estimator from Andrews (1991) is used.

When b is set equal to zero in the first step, then the estimator is identical to the

Andrews (1991) estimator.

Step 1:  Obtain estimates for the “prewhitened” residuals.  The following model

is estimated with least-squares:

(2.7) V A V e t b Tt T k t k T tk
b( $ ) $ ( $ ) $ , ,ψ ψ= + = +−=∑ for 11 L .

Andrews and Monahan (1992) only consider fixed values for b. In their Monte Carlo

experiments, b is set equal to zero or one for each element of Vt( $ψ T ).  If b is set equal to

zero, then $ ( $ )e Vt t T≡ ψ , and the estimator is equal to the estimator from Andrews (1991).

Note that we have placed the term “prewhitened” in quotation marks, because no

correction for serial correlation would be needed if the residuals were truly prewhitened.

Step 2: Choose a weighting matrix. Under certain regularity conditions, it is

possible to derive the bandwidth parameter growth rate that minimizes the asymptotic

MSE of the spectral estimator (cf. Priestley 1982; Andrews 1991). The optimal bandwidth

parameter sequence for a given kernel depends on an N2×N2 weighting matrix W and on

the smoothness properties of the kernel, as indicated by the characteristic exponent, q (cf.

the discussion in Section 3.2 below).  For the Bartlett kernel, q = 1; and for the QS kernel,

q = 2.  For a given kernel with characteristic exponent q, the asymptotically optimal

bandwidth parameter sequence is given by:

(2.8) ( )[ ] ( )ξ αT
qc q q T* /( ) .= +1 2 1

Here

(2.9) ( )( )( )α ( )
( )' ( )( ) ( )

q
S W S

W I K S S

q q

=
+ ⊗

2 vec vec
tr

,
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(2.10) ( )c q
q
q

=
=
=





11447 1
13221 2
.
.

for
for

  ,

K is the N2×N2 commutation matrix that transforms vec(B) into vec(B′).  S(q) indicates

the q-th generalized derivative of the spectral density at frequency zero, which is defined

as follows (cf. the discussion in Section 3.2 below):

(2.11) S j Cq q
jj

( ) = =− ∞
∞∑  .

Andrews (1991) and Andrews and Monahan (1992) only assign positive weight to

the N  diagonal elements of S and S(q). Denote the n-th weight by ωn.  In a least-squares

estimation problem, Andrews and Monahan (1992) set all weights ωn corresponding to the

slope coefficients equal to unity, and the element corresponding to the regression intercept

equal to zero.  However, as discussed in Section 4.3.3, these weights make the bandwidth

parameter sensitive to the scaling of the variables, which can lead to highly unsatisfactory

results in practical applications.  A straightforward way to avoid this problem is to set ωn

equal to the inverse of the variance of Vnt T( $ )ψ .

Step 3:  Calculate the data-dependent bandwidth parameter.  Andrews (1991) and

Andrews and Monahan (1992) propose that a parametric model be used to provide initial

estimates of S and S(q), which are then plugged into equation (2.9).  In simulation

experiments, these authors estimate univariate AR(1) representations for each of the

N elements of $et .  Denote the resulting parameter estimates by ( $ , $ )ρ σn n
2 , n = 1, L , N.

For this parametric model, estimates of α(q) as constructed as follows:3

(2.12) ( ) ( )

( )
$ ( )

$ $

$ $
$

$

α
ω ρ σ

ρ ρ

ω σ
ρ

1

4
1 1

1

2 4

6 2
1

4

4
1

= − +

−

=

=

∑

∑

n
n n

n

N

n
n

n

N
,

                                                       
3   When a more general weighting matrix was chosen in step 2, then a parametric model that provides
estimates for the off-diagonal element of S and S(q) must be used.
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(2.13)
( )

( )
$ ( )

$ $

$
$

$

α
ω ρ σ

ρ

ω σ
ρ

2

4

1

1

2 4

8
1

4

4
1

=
−

−

=

=

∑

∑

n
n n

n

N

n
n

n

N
.

Finally, we obtain the following data-dependent bandwidth parameter for the

Bartlett kernel:

(2.14) [ ]$ . $ ( )* /ξ αT T= 11447 1 1 3 .

For the QS kernel, the data-dependent bandwidth parameter is given by:

(2.15) [ ]$ . $ ( )* /ξ αT T= 13221 2 1 5 .

For any positive semi-definite kernel, the bandwidth parameter must grow

arbitarily large with increasing sample size to ensure the consistency of the spectral

estimator.  Thus, even when the data are known a priori to be generated by a finite-order

MA(q) process, the kernel estimator may exhibit very poor properties if the bandwidth

parameter is simply set equal to q (cf. Ogaki 1992).  Furthermore, if the kernel estimator is

calculated under the restriction that the autocovariances beyond q are zero, then the

modified estimator is not necessarily positive semi-definite.  These considerations highlight

the advantages of using the parametric procedures proposed by Eichenbaum, Hansen and

Singleton (1988) or West (1994) for a MA process of known finite order.

Step 4:  Calculate the spectral density of the “prewhitened” residuals.

The spectral density at frequency zero of the “prewhitened” residuals is given by:

(2.16)

$ ( $ ) $ ( ),

$ ( ) $ $'

$ ( ) $ ' ( ) .

Σ Γ

Γ

Γ Γ

T
QS PW

T

T
j T

T

T t t j
t

T j

T T

j
j

j
T

e e j

j j j

−

= −

−

+
=

−

=

= ≥

= − <

∑

∑

κ
ξ1

1

1

1 0

0

   where

  for      and

for 

,

Step 5:  Calculate the HAC estimate of the spectral density.  The estimate of the

spectral density at frequency zero is given by
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(2.17) [ ] [ ]$ ( $ ) $ $ $ 'S I A I AT
QS PW

T N kk
b

T
QS PW

N kk
b−

=

− −
=

−
= − −∑ ∑ψ 1

1

1

1
Σ

2.2 The NW-PW estimator.

The NW-PW estimator by Newey and West (1994) is similar to the QS-PW

estimator.  The main difference lies in the procedure used to obtain initial estimates

for S and S(q) in equation (2.9).  Whereas Andrews (1991) uses a parametric model

to obtain these initial estimates, Newey and West (1994) propose the use of a non-

parametric method.

Step 1:  Obtain estimates for the “prewhitened” residuals.  Same as for QS-PW.

Step 2:  Choose a weighting matrix.  Newey and West (1994) assign positive

weight to the diagonal and off-diagonal elements of S and S(q).  In particular, given an N×1

vector w, the N2×N2 weighting matrix W in equation (2.9) is specified as a diagonal matrix,

where the i-th diagonal element is equal to the i-th element of vec(w w′ ). This

specification simplifies the formula for $ ( )α q in equation (2.9) considerably. In Monte

Carlo simulation experiments, Newey and West (1994) set all elements of w corresponding

to the slope coefficients equal to one, and the element corresponding to the regression

intercept equal to zero.  However, this choice of weights makes the bandwidth parameter

sensitive to the scaling of the variables.  As discussed in Section 4.3.3, a straightforward

way to avoid this problem is to set wn equal to the inverse of the standard deviation of

Vnt T( $ )ψ .

Step 3:  Calculate the data-dependent bandwidth parameter.  When W is as

described in step 2, then equation (2.9) can be expressed as follows:

(2.18) ( )α q
w S w

w Sw

q

= 





'
'

( ) 2

Newey and West (1994) propose that α(q) be estimated non-parametrically as follows:
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(2.19)

( )$ ' $

' $
, , ,

$ $ ,

,

( )

( )

/

/

α

β

β

q
w S w
w S w

q

j

l
T

l
T

q

q
j

j l

l

=






 =

=

= 





= 





=−
∑

0

2

1

2 9

2

2 25

0 1 2

100

100

   where

S

 for the Bartlett kernel and

 for the QS Kernel,

(q) Γ

where $Γj  is defined as in equation (2.16).  Newey and West (1994) consider the values 4

and 12 for β1, and the values 3 and 4 for β2 .  The characteristic exponent of the kernel

determines the rate at which the truncation parameter l increases with sample length T.

Using the estimate of α(q) given in equation (2.19), the data-dependent bandwidth

parameter is determined by equation (2.14) for the Bartlett kernel, and by equation (2.15)

for the QS kernel.

Step 4:  Calculate the spectral density of the “prewhitened” residuals.  Same as

for QS-PW (cf. equation 2.16), using the bandwidth parameter given by Step 3.  The

spectral estimator of the vector of “prewhitened” residuals is denoted by $Σ T
NW PW− .

Step 5:  Calculate the HAC estimate of the spectral density.  Same as for

QS-PW (cf. equation 2.17), using the results of Step 4:

(2.20) [ ] [ ]$ ( $ ) $ $ $ 'S I A I AT
NW PW

T N kk
b

T
NW PW

N kk
b−

=

− −
=

−
= − −∑ ∑ψ 1

1

1

1
Σ .

2.3 The VARHAC estimator.4

The VARHAC estimator of Den Haan and Levin (1994) estimates a VAR

representation for Vt T( $ )ψ , and then constructs the spectral density at frequency zero

implied by this model.

                                                       
4   GAUSS, RATS, and Fortran programs to calculate the VARHAC estimator can be found on the web-
site: http://weber.ucsd.edu/~wdenhaan.
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Step 1:  Lag order selection for each VAR equation.  For the nth   element Vnt of

the vector Vt( $ψ T ) (n = 1, L ,N) and for each lag order κ =  1, L  , K ,  the following

model is estimated by ordinary least squares:

(2.21) V V e t K Tnt j
N

njk j t k ntk= + = += −=∑ ∑1 1 1$ ( ) $ ( ) , ,,α κ κκ for L .

Equation  (2.21) represents the  regression of each component of Vt on its own lags  and

the lags of the other components.  For lag order 0, we set $ ( )e Vnt ntκ ≡ . Next, the model

selection criterion is calculated for each lag order κ = 0,  L  , K .  In this case,

Akaike’s 1973) information criterion is given by:

(2.22) AIC log( ; )
$ ( )κ κ κ

n
e

T
N

T
ntt K

T

=






 += +∑ 2

1 2
.

Schwarz’ (1978) Bayesian information criterion is given by:

(2.23) BIC log( ; )
$ ( )

log( )κ κ κ
n

e
T

T
N

T
ntt K

T

=






 += +∑ 2

1 .

For each element of Vt( $ψ T ), the optimal lag order κn is chosen as the value of κ

that minimizes AIC(κ;n) or BIC(κ;n). Den Haan and Levin (1994) show that setting K

equal to T 1/3 leads to a consistent covariance matrix estimator.  Note that the only

specifications that are considered are the ones in which all elements of Vt enter with the

same number of lags in the regression equation for Vnt.  This constraint can easily be

relaxed, but at a substantial computational cost when the dimension N is large.

Step 2:  Calculate the spectral density of the prewhitened residuals. Let $KT  be

the largest lag-order chosen by the model selection criterion for the N elements of Vt( $ψ T ).

Using  the results of step 1, the restricted VAR can be expressed as:

(2.24) V A V et T k
VAR

k
K

t k T t
T( $ ) $ ( $ ) $
$ψ ψ= += −∑ 1 ,
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where $et   is  an  N×1  vector  with  typical  element $ ( )ent nκ .   The (n,j) element of $Ak
VAR  is

equal to zero if k > κn and it is equal to $ ( )α κnjk n if k ≤ κn.  The innovation covariance

matrix $Σ T
VARHAC  is estimated as follows:

(2.25) $ $ $'Σ T
VARHAC t tt K

T e e
T

= = +∑ 1 .

Alternatively, seemingly unrelated regression (SUR) methods could be used to obtain joint

estimates of the restricted VAR parameters and the innovation covariance matrix, which

would yield more efficient parameter estimates if the innovation covariance matrix

contains significant off-diagonal elements.5

Step 3:  Calculate the HAC estimate of the spectral density.  Using the results of

steps 1 and 2, the spectral density matrix at frequency zero is estimated by:

(2.26) [ ] [ ]$ ( $ ) $ $ $ '
$ $

S I A I AT
VARHAC

T N k
VAR

k
K

T
VARHAC

N k
VAR

k
KT Tψ = − −=

−

=

−
∑ ∑1

1

1

1
Σ .

2.4 The PL estimator.6

The estimator of Lee and Phillips (1994) combines elements of the procedures

described above.  Note that in this section, Vt  is assumed to be a scalar process.

Step 1:  Lag order selection using an ARMA specification.  Lee and

Phillips (1994) propose that the Hannan-Rissanen recursion (cf. Hannan and Rissanen

1982) be used to determine the order and estimated coefficients of an ARMA

representation of the data.  In the first stage, an AR specification for Vt T( $ )ψ is selected

using AIC as the model selection criterion.  The estimated residuals from this regression

are denoted by  $et . In the second stage of the algorithm, Vt T( $ )ψ is regressed on lagged

values of Vt T( $ )ψ and $et .  That is,

(2.27) V a V b e et T k t k T
k

p

k
k

q

t k t( $ ) ~ ( $ ) ~ $ ~ψ ψ= + +−
= =

−∑ ∑
1 1

.

Then $ $p q and  are selected as the order estimates that minimize the BIC criterion.

                                                       
5   Efficiency gains can also be achieved in small samples by reestimating the equations using observations
before K , whenever possible.
6   A GAUSS subroutine library is available from Predicta Software Inc. (phone: 203-432-3695).
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Let the estimates for ~ ~a bk k and  using the ARMA( $ , $p q ) specification be denoted by

$ $a bk k and , respectively.  Then the estimated residuals from this model are given by:

(2.28) ~$ ( $ ) $ ( $ ) $ $
$ $

e V a V b et t T k t k T
k

p

k
k

q

t k= − −−
= =

−∑ ∑ψ ψ
1 1

 .

Step 2:  Calculate the spectral density of the “prewhitened” residuals.

The procedure of Andrews (1991) is used to obtain an estimate for the spectral density at

frequency zero of the “prewhitened” residuals ~$et  (as described in Steps 2 to 4 of Section

2.1 above).  As in Lee and Phillips (1994), we use $Σ T
PL  to denote the spectral estimator

at frequency zero of the process ~$et  .

Step 3:  Calculate the HAC estimate of the spectral density.  The spectral density

at frequency zero of the process Vt T( $ )ψ  is estimated by:

(2.29)
[ ]

[ ]
$ ( $ )

$ $

$

$

$
S

b

a
T
PL

T

kk
q

T
PL

kk
p

ψ =
+

−
=

=

∑
∑

1

1

1

2

1

2

Σ
.

2.5  The R95 estimator.

Robinson (1995) has recently proposed a non-parametric estimator of the spectral

density of ut⊗ xt.  This non-parametric estimator does not require the use of a kernel.  The

R95 estimator is given by:

(2.30)

$ $ ( ) $ ( ), ,

$ ( ) ( )( )' ,

$ ( ) $ ' ( ) ,

.

S j j z u x

j
T

z z z z j

j j j

z
T

z

T
R

T
u

T
x

j T

T

T
z

t t j
t

T j

T
z

T
z

t
t

T

=

= − − ≥

= − <

= −

−

+
=

−

=

∑

∑

∑

Γ Γ

Γ

Γ Γ

1

1

1

1

1
0

0

            where for  =   

 for  and

for             and

=
1

.

An interesting feature of this estimator is that no choices are required, making it the

simplest HAC estimator discussed in this chapter.  However, the R95 estimator has an

important disadvantage.  Consistency requires that the following condition is satisfied:



14

(2.31) E(u0⊗ x0) (u′j⊗ x′j) = E(u0u′j) ⊗  E(x0x′j).

This condition rules out any form of heteroskedasticity.  Moreover, as noted by

Robinson (1995), both ut and xt must be random processes, so the estimator cannot be

used for scalar processes.  This would occur when Vt  contains two elements, one of which

is a constant term.  In this case, the R95 estimator is identical to the sample periodogram,

which is not a consistent estimator of the spectral density (cf. Priestley 1982).
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3.  ASYMPTOTIC PROPERTIES

In this section, we discuss the asymptotic properties of HAC robust covariance

matrix estimation procedures. In particular, we discuss consistency and the rates at which

the estimators converge to the population values.  For each of the estimation procedures

reviewed in Section 2, the specific assumptions and methods of proof used to verify these

asymptotic properties can be found in the references cited there.  Therefore, in this section

we focus on the broader issues concerning the large-sample performance of these

estimators. Nevertheless, this section is more technical than the other section in this paper.

However, the reader does not have to read this section to be able to follow Sections 4 and

5.  In Section 3.1, we give an overview of the issues discussed in this section.

3.1  General Considerations.

The estimated HAC covariance matrix is typically used to construct test statistics

based on the limiting distribution of the regression parameters.  Given that the true limiting

covariance matrix is constant, the test statistic typically has a standard normal or chi-

squared limiting distribution.  To the extent that the estimated HAC covariance matrix is

not constant due to sampling variation, the test statistic will tend to deviate from its

limiting distribution and thereby generate distorted inferences.

Based on these considerations, the key asymptotic property to be determined is the

rate at which the estimated HAC covariance matrix converges (in mean-squared) to

its fixed limiting value.  From equation (2.2), it can be seen that this rate depends on the

convergence of the differential matrix, DT  , and the estimated spectral density matrix

at frequency zero, ST  .  The differential matrix DT   (defined in equation 2.3) typically

converges at the rate Op(T -1/2 ), where the notation Op(⋅) indicates convergence in

probability.7   However, to obtain a spectral estimator that captures general temporal

dependence, it is necessary to increase the bandwidth parameter (for a kernel-based

procedure) or the lag order (for a parametric procedure).  Thus, the estimated spectral

density matrix generally converges more slowly than Op(T -1/2 ), so that this becomes the

rate-limiting step in constructing a HAC covariance matrix.  Under certain regularity

                                                       
7   As indicated in footnote 2, in estimation problems where N > p, the asymptotic covariance matrix also
depends on the limiting value of the weighting matrix, FT  .  However, this matrix typically converges at
rate Op(T -1/2 ), and may converge at an even faster rate if the weights are non-stochastic.



16

conditions, the use of estimated residuals rather than observed data has a negligible effect

on the asymptotic properties (cf. Newey and West 1987; Andrews 1991; Den Haan and

Levin 1994).

In light of these considerations, the asymptotic properties of alternative HAC

covariance matrix estimators can be largely understood by analyzing the properties of the

corresponding spectral density estimators.  The asymptotic mean-squared error (MSE)

of the spectral density estimator can be decomposed into a non-stochastic component,

henceforth referred to as the asymptotic bias, and a stochastic component, henceforth

referred to as the asymptotic variance. Sections 3.2 and 3.3 discuss these components for

kernel-based spectral estimators, and Sections 3.4 and 3.5 consider these components for

the VAR spectral estimator.

3.2  Asymptotic Bias of Kernel Estimators.

Kernel-based spectral estimators face three sources of bias.  First, from equation

(2.5), it can be seen that the sample autocovariances used by the kernel estimator divide by

T and not by the actual number of observations used, so that each sample autocovariance

( )~ΓT j is biased by the factor  - j/(T - j).  However, this source of bias will generally be

asymptotically negligible.  For example, the truncated, Bartlett, and Parzen kernels only

assign non-zero weight to sample autocovariances of order | j | <  ξT  , so that the

bandwidth parameter ξT  may also be referred to as the lag truncation point for these

kernels.  For the truncated kernel, this bias will be |ξT|/(T-|ξT | ).  For the Bartlett and

Parzen kernels, the weight assigned to autocovariances | j | < ξT   declines at least linearly

as a function of the lag order j, so that the maximum degrees-of-freedom bias is even

smaller.  Thus, as long as ξT   grows sufficiently slowly as a function of the sample length

T, this source of bias becomes asymptotically negligible.  Similar considerations apply to

the QS kernel, and to all other kernels that ensure a positive semi-definite spectral density

matrix, even when the bandwidth parameter does not serve as a lag truncation point.

Second, kernel-based estimators of the spectral density incur bias due to assigning

zero weight to autocovariances of lag orders longer than the sample length T.  The true

spectral density at frequency zero can be expressed as:
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(3.1) ( ) ( )f j
j

0 =
=− ∞

+ ∞
∑ Γ .

Thus, the bias due to neglected autocovariances is equal to the sum of all autocovariances

( )Γ j , summing over  T  ≤  | j |  ≤  +∞ .  This source of bias clearly diminishes with

increasing sample length, but it is useful to quantify the rate at which the bias vanishes

as T → ∞ .  In particular, suppose that the absolute value of ( )Γ j shrinks geometrically

at the rate  | |j r + δ for some r > 0 and some δ > 1.  Then it is not difficult to show

(cf. Davidson 1994, pp. 31-32) that:

(3.2) ( )j jr

j

 Γ < + ∞
=− ∞

+ ∞
∑ .

In this case, the bias due to neglected autocovariances vanishes at the rate T r .  It is

interesting to note that for even values of the parameter r, the left-hand side of

equation (3.2) can be viewed as the r-th derivative of the spectral density at frequency

zero.  For r > 0, Parzen and subsequent authors have referred to this formula as the

generalized derivative of the spectral density at frequency zero (cf. Priestley 1982,

p. 459).  Thus, the parameter r can be interpreted as the degree of smoothness of the

spectral density at frequency zero; i.e., r indicates the highest order for which the

derivative of the spectral density is well-defined.  For finite-order ARMA processes, the

autocovariances vanish at an exponential rate; in this case, the spectral density is infinitely

differentiable at frequency zero, so that an arbitrarily large value of  r may be chosen .  If

r < 1, then the spectral density displays a “cusp” (or kink) at frequency zero, and is not

differentiable in the generalized sense.

The third and dominant source of bias faced by kernel estimators is incurred by

placing weights less than unity on the autocovariances at lags shorter than the sample

length.  As seen in equation (3.1), the true spectral density at frequency zero assigns a

weight of unity to all of the autocovariances.  The sample periodogram at frequency zero

places a weight of unity on all of the sample autocovariances, but it is easy to see that the

variance of this estimator does not converge to zero.  For example, the sample

autocovariance of order T - 1 is always determined by the first and last observations,

regardless of the sample length.
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The truncated kernel is the simplest method that yields a consistent estimate of

the spectral density.   This estimator places weight of unity on all autocovariances up to

the lag truncation point ξT  .  Thus, from equation (3.2), it can be seen that the bias of

the truncated kernel vanishes at the rate ξT
r , a rate that may be very rapid if the spectral

density is very smooth at frequency zero.  In fact, if the data are generated by a finite-

order moving-average (MA) process, this bias disappears once the lag truncation point

reaches the MA order.  Unfortunately, the truncated kernel does not necessarily yield a

positive semi-definite spectral density matrix, which limits its usefulness in HAC

covariance matrix estimation.  Note that positive semi-definite kernels require that ξT →  ∞

as T →  ∞  to eliminate the bias, even when the data are generated by a finite-order moving

average processes.

This source of bias is more severe for estimators in the class of kernels that ensure

a positive semi-definite spectral density matrix.  Kernels in this class must assign weights

less than unity to all sample autocovariances (except the sample variance), and the weights

must decline toward zero with increasing lag order j.  For example, as seen below

equation (2.5), the Bartlett kernel assigns linearly declining weights that reach zero at the

lag truncation point ξT   .  The QS kernel assigns weights that decline non-linearly, reaching

zero at a lag order of about 120 percent of the bandwidth parameter ξT   and then oscillate

around zero for higher lag orders up to the sample length T.  For any particular kernel

κ(⋅), this source of bias can be expressed as follows:

(3.3) ( ) ( )( ) ( )Biasκ ξ ξT j jT T
j T

T
, /= −

=− +

−
∑ 1

1

1
κ Γ .

Since κ(z) < 1 for z ≠ 0, this formula indicates that the bandwidth parameter (lag

truncation point) must increase with sample length to reduce this source of bias.

Even if the data is generated by a finite-order MA process, so that true autocovariances

are equal to zero beyond some maximum lag length, it is necessary for ξT → ∞   to ensure

the consistency of estimators in this class of kernels.  In this case, the kernel argument  j/ξT

declines toward zero for each fixed value of j.

If the bandwidth parameter increases with the sample length, and the

autocovariances vanish at a sufficiently rapid rate (i.e., the spectral density is sufficiently
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smooth at frequency zero), we can expect that the asymptotic bias will ultimately be

determined by the behavior of the kernel κ(z) around z = 0 as the sample length grows

arbitrarily large.  For example, the weights assigned to the low-order autocovariances are

closer to unity for the QS kernel than for the Bartlett kernel, so that we may expect this

bias to vanish at a faster rate for the QS kernel.  This property can be made more precise

by considering the characteristic exponent q, which is defined as the largest positive

integer such that  (1 - κ(z))/| z|q  has a finite, non-zero limit as z → 0 (cf. Priestley 1982,

p. 459).  Thus, the characteristic exponent can be viewed as indicating the smoothness of

the kernel κ(z) at z = 0.  It is easy to verify that q = 1 for the Bartlett kernel, and that

q = 2 for the QS kernel.  More generally, it can be shown that q ≤ 2 for every kernel that

ensures a positive semi-definite spectral density matrix (Priestley 1982, p. 568).  The

truncated kernel, which is infinitely differentiable at z = 0, obviously violates this

condition.

Now we can quantify the asymptotic bias for the class of kernels that ensure a

positive semi-definite matrix.  For a given kernel κ(⋅) with characteristic exponent q, we

can rewrite equation (3.3) as follows:

(3.4) ( ) ( )
( ) ( )[ ]Biasκ ξ ξ

ξ
ξ

T
j

j
j jT T

q T

T
q

q

j T

T

,
/

/
=

−










−

= − +

−
∑

1

1

1 κ
Γ .

If we assume that r, the largest generalized derivative of the spectral density at frequency

zero, is at least as large as the characteristic exponent q, then the term in curly brackets is

bounded and the term in square brackets is absolute summable. Thus, this source of bias

vanishes at rate O T
q( )ξ −  as the bandwidth parameter ξT  →  +∞ .  If we also assume that

the bandwidth parameter increases sufficiently slowly that ξT
q T/ → 0, then it can be

shown that the bias indicated in equation (3.4) dominates the previous two sources of bias

(cf. Priestley 1982, p. 459).

3.3  Asymptotic Variance and MSE of Kernel Estimators.

Since kernel-based spectral estimators are calculated from the sample

autocovariances, it is clear that the variance of the kernel-based estimate will depend
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on the higher moments and temporal dependence of the true data generating process.

To analyze this issue further, let us consider a stochastic process {Vt}which has stationary

moments up to at least the fourth order.  In this case, the fourth-order cumulants

K4(t,t+j,t+m,t+n) measure the extent to which this process displays excess kurtosis

relative to the fourth-order moments implied by a normally distributed process, 
(

Vt , with

identical autocovariances (cf. Hannan 1970, p. 23; Priestley 1982, p. 58-59).

(3.5) K4(t,t+j,t+m,t+n)  =    E(Vt - EVt)  (Vt+j   - EVt+j)   (Vt+m   - EVt+m)   (Vt+n   - EVt+n)

         -   E(
(

Vt   - E
(

Vt ) (
(

Vt j+  - E
(

Vt j+ ) (
(

Vt m+  -  E
(

Vt m+ ) (
(

Vt n+   - E
(

Vt n+ ).

Now suppose that this generalized form of excess kurtosis is not too large, so that the

fourth-order cumulants are absolutely summable:

(3.6) K t t j t m t n
nmj

4 ( , + , + , + ) < +  ∞
=− ∞

+ ∞

=− ∞

+ ∞

=− ∞

+ ∞
∑∑∑ .

Under this condition, Bartlett (1946) obtained results that provided the foundation for all

subsequent research on the sampling properties of spectral estimators.  First, the variance

of each sample autocovariance ( )~ΓT j  vanishes at the rate 1/T .  Second, if we consider

two sample autocovariances ( )~ΓT m and ( )~ΓT n at different lags m ≠ n, then the covariance

between ( )~ΓT m and ( )~ΓT n vanishes at the rate 1/T ; i.e., the sampling variation in sample

autocovariances at different lags becomes uncorrelated as the sample length grows large.

These results are immediately applicable to any kernel-based spectral estimator,

such as the truncated or Bartlett kernel, that can be expressed as a weighted average of

the sample autocovariances for lags  0  ≤  j  ≤  ξT  ; i.e., any kernel that assigns zero

weight to sample autocovariances beyond the lag truncation point ξT  .  In particular, these

results indicate that such estimators will have asymptotic variance of Op  (ξT  /T ) as long

as the bandwidth parameter ξT  grows at a slower rate than the sample length T.   This

result for the asymptotic variance can also be obtained for spectral estimators based on

more general kernels, such as the QS kernel (cf. Priestley 1982, p. 457; Andrews 1988,

1991).  Finally, these results can be extended to non-stationary processes, under certain

conditions on temporal dependence and the existence of sufficiently high moments
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(cf. Andrews 1991).8

Using this result and those of the previous section, we can now evaluate the

asymptotic MSE for the class of kernels that yield a positive semi-definite spectral density

matrix.   In particular, by adding the squared asymptotic bias to the asymptotic variance

for a given kernel κ(⋅) with characteristic exponent q, the asymptotic MSE can be

expressed as follows:

(3.7) ( ) ( ) ( )MSEκ ξ ξ ξT O O TT T
q

p T, /= +− 2 .

This formula highlights the MSE tradeoff in choosing the bandwidth parameter ξT   for a

given sample of length T .  On the one hand, using a higher bandwidth reduces the bias

caused by the declining kernel weights.  On the other hand, raising the bandwidth places

larger weight on the high-order sample autocovariances that are relatively poorly

estimated.

We can also use equation (3.7) to evaluate the optimal growth rate of the

bandwidth parameter, ξT  , and the corresponding minimum asymptotic MSE.

By differentiating the right-hand-side of equation (3.7) with respect to ξT  and setting

the result to zero, we find that the asymptotic MSE is minimized for a kernel with

characteristic exponent q when the bandwidth parameter grows at rate O(T 1/( 2q  +1 ) ),

and that the minimum asymptotic MSE vanishes at rate O(T  -2q / (2q  +1 ) ).  Thus, as seen

in equation (2.8), the optimal growth rate of the bandwidth parameter for the QS kernel is

O(T 1/5 ).  Using the optimal sequence of bandwidth parameters, the QS spectral estimator

converges in mean-squared at rate ( )O Tp
− 2 5/ .

As discussed in the previous section, the weighting scheme of the Bartlett kernel

imposes a higher degree of bias than the QS.  Thus, as seen in equation (2.8), the Bartlett

kernel utilizes a higher bandwidth parameter growth rate of O(T 1/3 ),  which diminishes the

influence of the bias, but at the cost of additional variance.  Thus, the spectral estimator

based on the Bartlett kernel converges in mean-squared at a somewhat slower rate of

( )O Tp
− 1 3/ .

                                                       
8   The consistency of kernel-based estimators has been demonstrated under even weaker conditions by
Hansen (1992).
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3.4  Asymptotic Bias of the VAR Spectral Estimator.

As seen in equation (2.24), the VARHAC estimator depends on the VAR

coefficients and the estimated innovation covariance matrix.  Since these can be expressed

in terms of the sample autocovariances, the asymptotic properties of the VAR spectral

estimator can be analyzed using essentially the same methods discussed in Sections 3.2

and 3.3 for kernel-based spectral estimators.  In this discussion, we will consider a scalar

process { }Vt t=− ∞
∞ , as shown in Den Haan and Levin (1994), it is relatively straightforward

to extend this analysis to multivariate processes.

Before analyzing the properties of AR approximation, it is useful to review the

conditions under which the true autocovariance structure of a stochastic process can be

represented by an infinite-order AR.  These conditions are well-understood for weakly

stationary processes:  if a time series is linearly non-deterministic, then the process has an

MA(∞ ) representation with white-noise (homoscedastic and orthogonal) innovations; if no

linear combination of { }Vt t=− ∞
∞  has zero variance, then the process also has an AR(∞ )

representation.  In the absence of weak stationarity, the stochastic process itself does not

have an MA(∞ ) or AR(∞ ) representation with white-noise innovations.  Nevertheless,

under the same conditions that have been used to analyze kernel-based spectral estimators,

Den Haan and Levin (1994) have demonstrated that the limiting population

autocovariances have an MA(∞ ) representation.  Furthermore, if no linear combination of

the data has zero variance (a condition typically used to verify the temporal dependence

conditions utilized for kernel-based estimators), then the limiting autocovariances also

have an AR(∞ ) representation.  Thus, to simplify the following discussion, we will focus

on the case in which the stochastic process is strictly stationary.

To evaluate the asymptotic bias of the AR spectral estimator, it is useful to define

the sequence of Toeplitz matrices Gh, , and the corresponding infinite-dimensional matrix

G∞  .  The autocovariance Γ( )j i− comprises the (i,j)th element of Gh  for i,  j = 1, L , h,

and the (i,j)th element of G∞  for i, j = 1, 2, L . It is also useful to define the sequence of

vectors gh   and the corresponding infinite-dimensional vector g∞  , where Γ( )j comprises

the j-th element of gh   for  j = 1, L , h, and the j-th element of g∞  for j = 1, 2, L .
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Now if we assume that the spectral density function f(ω) is positive over [0,π],

then it can be shown that all eigenvalues of G∞  are positive, and that all eigenvalues

of Gh are positive for all h  ≥ 1 (Grenander and Szegö 1958).  Thus, det(G∞  ) ≠ 0, and

det(Gh  ) ≠ 0 for all h  ≥ 1, thereby ruling out cases in which some linear combination

of the elements of (Vt, , L , Vt-h  ) has zero variance.  In this case, the infinite-order

Yule-Walker equations G∞  A∞  = g∞   are well-defined (cf. Hannan and Kavalieris 1983,

1986; Hannan and Deistler 1988).  Since the inverse of  G∞ is also well-defined, the

infinite-dimensional vector A∞  of AR(∞ ) coefficients and the innovation variance Σ∞

can be expressed as follows:

(3.8)                   A∞  = G∞
− 1

 g∞     and    Σ∞   =   Γ(0)  +  g′∞ A∞ .

The spectral density at frequency zero can be expressed as follows:

(3.9)                 ( )f A j
j

0 1
1

2

= −





∞ ∞
=

∞ −

∑Σ ( ) .

In this case, it can also be shown that the AR(∞ ) coefficients decline at the same rate as

the autocovariances:

(3.10)                  If ( ) ( )j G j j A jr

j

r

j= − ∞

+ ∞

∞
=

∞
∑ ∑< + ∞ < + ∞, then

0
.

Now consider the AR(h) approximation, which is based on the true

autocovariances Γ(j) for j = 0, L ,h.  Since det(Gh) > 0 for all h, we can express the

autoregressive coefficient vector Ah  and the innovation variance Σh  as follows:

(3.11) A G gh h h= − 1   and  Σh  =  Γ(0) + g′h  Ah  .

The spectral density at frequency zero corresponding to the AR(h) approximation

can be expressed as follows:

(3.12) S A jh
ar

h h
j

h
= −



=

−

∑Σ 1
1

2

( ) .
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Den Haan and Levin (1994) establish the asymptotic bias of the AR(h) spectral

estimator as follows:

(3.13)  Biasar (h)  =  ( )S f O hh
ar r− = −0 ( ) .

Thus, as seen from equation (3.2), the smoothness of the spectral density at

frequency zero determines the asymptotic bias of the AR spectral estimator.  Thus,

unless the data are generated by a finite-order AR process, it will be required that the

lag order h → ∞   in order to capture the true autocovariance structure of the data.

From the discussion in Section 3.2, it can be seen that the bias of the AR(h)

spectral estimator vanishes at the same rate as the bias of the truncated kernel estimator.

As previously noted, however, the truncated kernel does not necessarily yield a positive

semi-definite spectral density at frequency zero, whereas the AR(h) spectral estimator is

ensured to be positive semi-definite by construction.

To understand this result further, it is useful to note that the AR spectral estimator

can be expressed as S jh
ar

hj= =− ∞
∞∑ Γ* ( ) , where Γh j* ( ) are the autocovariances implied by

the AR(h) model.  From equation (3.11), it can be seen that the AR(h) coefficients are

determined by the hth-order Yule-Walker equations, so that Γ Γh j j* ( ) ( )=  for | j |  ≤  h.

Thus, the difference between the AR(h) and truncated spectral estimators can be

expressed as D jh
ar

hj h= >∑ Γ*
| | ( ) . Furthermore, as with any stationary finite-order AR

process, the implied higher-order autocovariances Γh j* ( )  decline exponentially toward

zero as j →  ∞  (cf. Hamilton 1994, p. 266).  This implies that Dh
ar  vanishes at the same rate

as the leading term Γh h* ( )+ 1  = O(h-q-1).  Thus, by including these implied higher-order

autocovariances, the VAR(h) estimator ensures a positive definite spectral density matrix

with negligible effects on the asymptotic bias relative to the truncated kernel estimator.
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3.5  Asymptotic Variance and MSE of the VAR Spectral Estimator.

To analyze the asymptotic variance of the AR spectral estimator, we define the

sequence of sample Toeplitz matrices $GTh , where the (j-i)-th sample autocovariance of

Vt T( $ )ψ , $ ( )ΓT j i− , comprises the (i,j)th element of  $GTh  for i,  j = 1, L , h; and we

define the sequence of sample vectors $gTh  , where $ ( )ΓT j comprises the j-th element of

$gTh  for  j = 1, L , h.  Then the estimated AR(h) coefficient vector $ATh  and the estimated

innovation variance $Σ Th  can be expressed as follows:

 (3.14) $ $ $A G gTh Th Th= − 1   and ( )$ $ $ $Σ ΓTh T Th Thg A= + ′0 .

The spectral density estimator at frequency zero corresponding to the estimated

AR (h) approximation can be expressed as follows:

(3.15) $ $ $ ( )S A jTh
ar

Th Th
j

h
= −



=

−

∑Σ 1
1

2

.

Now we can evaluate the rate at which $STh
ar converges to Sh

ar .  From equations

(3.14) and (3.15), it is clear that the AR spectral estimator can be expressed in terms of

the sample autocovariances.  If the maximum lag order HT   is restricted to grow at rate

O(T 1/3 ), then Den Haan and Levin (1994) demonstrate that $GTh
− 1  converges at rate

o(h/T)1/2 to Gh
− 1 , uniformly in 0 ≤  h  ≤  HT .  In this case, the asymptotic variance of $STh

ar

is dominated by the sum of elements of the vector ( )G g gh Th h
− −1 $ , which can be

expressed as a weighted average of the sample covariance deviations ( ) ( )$Γ ΓT j j− .

Thus, Bartlett’s (1946) result (or its generalization to non-stationary processes) can be

applied directly to this weighted average.  Thus, we find the asymptotic variance of the

AR spectral estimator to be O(h/T ), uniformly in 0 ≤  h  ≤  HT .  In other words, the

asymptotic variance of the AR spectral estimator converges at the same rate as the

asymptotic variance of kernel-based spectral estimators.

Combining this result with the asymptotic bias given in equation (3.13), we can

evaluate the asymptotic MSE of $STh
ar  as follows:
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(3.16) ( ) ( ) ( )MSEar T T
r

p TT h O h O h T, /= +− 2 .

uniformly in 0 ≤ hT ≤ HT = O(T 1/3).  This result reveals a MSE tradeoff in the choice of lag

order h, similar to the MSE tradeoff in the choice of bandwidth parameter for kernel-

based estimators: namely,  a higher lag order reduces the asymptotic bias and increases the

asymptotic variance.  Since the optimal growth rate of the lag order depends on the

smoothness of the spectral density at frequency zero, one might suppose that the optimal

rate cannot be identified in practice.

In fact, however, we can approach arbitrarily closely to the optimal growth rate

by using Schwarz' (1978) Bayesian Information Criterion (BIC) to select the lag order.

The BIC penalty term, h log(T)/T, is sufficiently large to dominate the sampling variation

of the estimated innovation covariance matrix, so that $Σ Th  can be used as a proxy for Σh,

the covariance matrix implied by the true AR(h) approximation.  Furthermore, Σh

converges at rate O h r( )− 2  to Σ∞  , the innovation covariance matrix implied by the AR(∞ )

representation.  Thus, BIC provides a means of evaluating the tradeoff between

asymptotic bias (by measuring the extent to which additional lags improve the goodness-

of-fit) and asymptotic variance (by penalizing the use of additional parameters).

If the spectral density is differentiable at frequency zero (i.e., r ≥ 1), the lag order

chosen by BIC converges to ( / log( )) /( )T T r1 2 1+ , so that the AR spectral estimator

converges in probability at a geometric rate arbitrarily close to ( )T r r− +/ 2 1 .  If the true

autocovariances correspond to those of a finite-order ARMA process (i.e., r→ +∞ ), then

the lag order chosen by BIC grows at a logarithmic rate, and  the AR  spectral  estimator

converges  in probability at a rate arbitrarily close to T  1/2.   Finally, in the case where the

spectral density is not differentiable at frequency zero (i.e., 0 < r < 1), the lag order chosen

by BIC approaches the maximum rate H(T) = T 1/3, and the AR spectral estimator

converges in probability at the rate T r / 3 .

As previously noted, the truncated kernel estimator also has asymptotic bias of

O h r( )− and asymptotic variance of Op(h/T).  Thus, in principle, the truncated kernel

estimator could converge at rate ( )T r r− +/ 2 1  if the lag truncation point ξT  could be chosen

to grow at the optimal rate.  In practice, however, a data-dependent bandwidth selection
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procedure has not been developed for the truncated kernel estimator (cf. Priestley 1982,

pp. 460-462; White 1984, p. 159; Andrews 1991, p. 834).

Finally, these asymptotic results indicate that the AR spectral estimator converges

at a faster rate than any positive semi-definite kernel-based estimator for almost all

autocovariance structures.  If q <  r , the positive definite kernel estimators lose efficiency

by placing weight less than unity on the low-order autocovariances.  The extreme case is

one in which the autocovariances have the structure of a finite-order ARMA process, so

that r is arbitrarily large.  In this case, the AR spectral estimator converges at a rate

approaching Op (T -1/2), whereas spectral estimators based on either the Parzen or QS

kernel converge at the rate Op (T -2/5), and the spectral estimator based on the Bartlett

kernel converges at the rate Op (T -1/3).

For r <  q, positive definite kernel estimators with q = 2 are also less efficient than

the AR spectral estimator, because the bandwidth parameter specified by Andrews (1991)

grows too slowly.  For example, in the case where r = 1/2, BIC will asymptotically select

the maximum lag order O(T 1/3), so that the AR spectral estimator converges at rate

Op (T -1/6).  In contrast, the spectral estimators which are based on either the Parzen or QS

kernel, and which utilize Andrews' (1991) bandwidth selection procedure, will converge at

rate Op (T -1/10).  Thus, the VAR spectral estimator converges at a faster rate than the QS

or Parzen kernels except in the special case where r is exactly equal to 2.  The AR spectral

estimator converges at a faster rate than the Bartlett kernel estimator for r > 1.  If  r ≤ 1,

the bandwidth parameter of the Bartlett kernel and the VAR lag order both increase at

rate O(T 1/3), so that both estimators converge in probability at the same rate T r− / 3 in this

case.
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4. CHOICES FOR KERNEL-BASED ESTIMATORS.

To implement a kernel-based procedure, the practitioner must choose a particular

kernel and bandwidth parameter, as well as the order of a prewhitening filter, if any.

To construct a data-dependent bandwidth parameter, as proposed by Andrews (1991)

and Newey and West (1994), the practitioner must choose a weighting matrix and a

method of providing initial estimates of the spectral density and its first or second

derivative at frequency zero.  In this section, we utilize simulation experiments to highlight

the implications of these choices for the finite-sample behavior of the data-dependent

bandwidth parameter, the estimated HAC covariance matrix, and the resulting accuracy of

inferences on linear regression parameters.  This analysis also provides some useful

guidelines to aid a practitioner in the effective implementation of these procedures.

4.1  Prewhitening.

Andrews and Monahan (1992) considered the benefits of applying an AR(1)

prewhitening filter to the vector of residuals before using a kernel-based estimator

(cf. Priestley 1982, pp. 556-557).  The AR(1) filter has provided improved inference

properties in many Monte Carlo simulation experiments, some of which have considered

data generating processes resembling actual economic time series (cf. Andrews and

Monahan 1992; Newey and West 1994; Christiano and Den Haan 1996; and Burnside and

Eichenbaum 1996).

In the absence of a prewhitening filter, kernel-based spectral estimators tend to

exhibit substantial bias in cases where the autocovariances decline gradually toward zero.

First, kernel-based procedures assign zero (or approximately zero) weight to

autocovariances at lags higher than the bandwidth parameter.  Second, to ensure a positive

semi-definite estimator, kernel-based procedures assign weights less than unity to

autocovariances at lags less than the bandwidth parameter.  The rate at which these

weights decline toward zero also depends on the bandwidth parameter:  i.e., the auto-

covariance at a given lag receives less weight when the bandwidth parameter is small.

The AR(1) filter estimates the value of an autoregressive root based on the first-

order autocovariance.  After the filtering of this autoregressive root, the autocovariances

of the prewhitened residuals may decline more rapidly toward zero, thereby reducing the
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bias of the kernel-based estimator.  Thus, AR(1) prewhitening can provide finite-sample

benefits even when the true dgp is not a low-order VAR process.  For example, Andrews

and Monahan (1992, Table V) find that the AR(1) filter yields improved inference

properties even when the residuals are MA(q) processes.

It should also be noted that the AR(1) prewhitening filter is a special case of

parametric estimators which determine the autoregressive order using a data-dependent

model selection criterion.  Lee and Phillips (1994) consider the use of BIC to choose an

ARMA process to prewhiten the data, and then apply a kernel-based estimator to the

prewhitened residuals.  In the case where the true data generating process is a finite-order

ARMA with i.i.d. innovations, Lee and Phillips (1994) have demonstrated that the optimal

bandwidth parameter grows very slowly, so that the kernel has negligible asymptotic

influence on the spectral estimate.  The asymptotic analysis of Den Haan and Levin (1994)

indicates that this result holds under much more general conditions:  as the sample length

increases, the data becomes truly prewhitened by the parametric procedure, so that no

additional benefits can be derived from applying a kernel-based procedure to the

prewhitened data.  In small samples, of course, the parametric procedure does not

completely prewhiten the data, so that applying a kernel estimator to the parametric

residuals may provide improved inferences under certain conditions.  In future research,

this possibility should be explored using Monte Carlo simulation experiments.

4.2  Choice of the kernel.

Many different kernels have been considered in the literature.  The truncated kernel

assigns unit weight to all sample autocovariances up to the bandwidth parameter, also

referred to as the lag truncation point (cf. White 1984).  Nevertheless, the truncated kernel

does not ensure a positive semi-definite covariance matrix, and no method is currently

available for determining the optimal lag truncation point.  In contrast, to ensure a positive

semi-definite spectral estimate, the Bartlett, Parzen, and QS kernels assign weights less

than unity to these sample autocovariances, with the weights declining toward zero as the

autocovariance lag increases.  Within the class of kernels that ensure a positive semi-

definite spectral estimate, the QS kernel minimizes the asymptotic MSE

(cf. Priestley 1982; Andrews 1991).  However, several simulation studies indicate that all
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kernels within this class have fairly similar finite-sample properties (cf. Andrews 1991;

Newey and West 1994; Christiano and Den Haan 1996).

4.3  Optimal Bandwidth Procedure.

The choice of the bandwidth parameter is crucial for the behavior of a kernel-based

estimator.  Increasing the bandwidth parameter reduces the bias while increasing the

variance of the estimated covariance matrix.  The sensitivity of inferences to the

value of the bandwidth parameter motivated the derivation of data-dependent bandwidth

parameter methods proposed by Andrews (1991) and Newey and West (1994).  Although

these methods are sometimes referred to as “automatic,” the practitioner should be aware

of several important issues which arise in obtaining a data-dependent bandwidth

parameter.  Section 4.3.1 discusses the optimality criterion used in deriving these methods.

Section 4.3.2 reviews the calculation of preliminary spectral estimates required to

implement these methods.  Section 4.3.3 considers the determination of the weighting

matrix in multivariate settings, and highlights the restriction that a single bandwidth must

be used for all elements to ensure a positive semi-definite HAC covariance matrix.

4.3.1  The Optimality criterion.

Andrews (1991) and Newey and West (1994) used the asymptotic (truncated)

MSE as the optimality criterion in obtaining the bandwidth parameter formula given in

equation (2.8) above.  Thus, for a given kernel, the data-dependent bandwidth parameter

formula only expresses the rate at which the bandwidth parameter should grow as a

function of the sample size, and cannot indicate the optimal value of the bandwidth

parameter for any particular finite sample.  More precisely, for any fixed integer M,

the bandwidth parameter ξT** = ξT* + M meets the same asymptotic optimality criterion

as the bandwidth parameter ξT* defined in equation (2.8).  Unfortunately, while ξT*

and ξT** may yield dramatically different results in a particular finite sample, there is no a

priori basis upon which to choose one bandwidth parameter over the other.

This non-uniqueness property may appear similar to other uses of asymptotic

optimality criteria in the literature.  For example, if the OLS estimator $β T  is consistent,



31

then $β T  + M/T  is also consistent for any fixed value of M.  The essential difference is that

the OLS estimator also satisfies a sensible finite-sample estimation criterion (namely,

minimizing the sum of squared residuals of the regression model), whereas current

bandwidth selection procedures do not satisfy any particular finite-sample criterion.

Although the data-dependent bandwidth parameter formula given in equation (2.8)

does not have a specific finite-sample justification, several simulation studies indicate that

this formula performs reasonably well in finite samples, if reasonably good initial spectral

density estimates can be plugged into this formula.  The question of how to obtain such

initial estimates will be discussed in Sections 4.3.2 and 4.3.3.

4.3.2  Implementing the Optimal Bandwidth Procedure.

The data-dependent bandwidth parameter formula given in equation (2.8)

depends on S and S(q), the spectral density and its q-th generalized derivative at frequency

zero.  Thus, preliminary estimates $ST  and $ ( )ST
q  are required to obtain an estimate of the

data-dependent bandwidth parameter $*ξT  , which is then used to obtain the final kernel-

based spectral estimator.  As indicated in Section 2.1 above, Andrews (1991) and

Andrews and Monahan (1992) obtain these preliminary estimates of S and S(q)

using a parametric approach, namely, fitting a univariate AR(1) model to each element

of the residual vector V T( $ )ψ .  As indicated in Section 2.2 above, Newey and West (1994)

obtain these initial estimates using a non-parametric approach, based on truncated sums of

the sample autocovariances.9

The key difference between these two methods is that the procedure of

Andrews (1991) and Andrews and Monahan (1992) only considers the first-order

autocorrelation of each element of the residual vector, whereas the procedure of Newey

and West (1994) considers several autocovariances and cross-covariances. The following

Monte Carlo experiment illustrates the extent to which this distinction can be important in

practice.

Consider the problem of estimating the mean of the following scalar process:

                                                       
9   That is, they calculate these statistics using the truncated kernel.  The estimated bandwidth will always
be positive, since these statistics are squared in the formula for the optimal bandwidth.
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(4.1)   Yt  =  εt  + ν εt-1 +  µ εt-q,  q ∈  {2,3},      and $ψ T
tt

T Y
T

= =∑ 1

where εt  is an i.i.d. normally distributed random variable with zero mean and unit

variance.  The parameters are chosen in such a way that  the first-order autocorrelation

coefficient of the prewhitened series is small or equal to zero,  but higher-order

autocorrelation  coefficients are substantially larger.

Several empirical cases suggest that such a time series process  for Yt  is not

unrealistic.  First, Fama and French (1988)  documented  that  for  stock returns,

autocorrelations are small for short horizons, but relatively  large for large horizons.

For instance, the average first-order autocorrelation across industries is equal to -0.03 for

one-year returns, but equal to -0.34 for four-year returns.  Second, Christiano and Den

Haan (1994) used a dgp resembling that of US  quarterly GNP, and found that some

prewhitened residuals had a very low first-order MA coefficient, but substantial higher-

order serial correlation.  This example will be discussed further in Section 4.4.

Table 1: The ability of QS-PW and QS-NW to detect serial correlation patterns.

q ν µ 99%

QS-PW

95% 90%

Average

$ξT 95%

NW-PW

95% 90%

Average

$ξT

2   0.0 -0.3 100.0 99.6 98.3 0.81 97.5 93.1 87.9   8.83

2  -0.1 -0.3  100.0 99.8 99.1 0.92 97.2 92.7 88.2 10.10

2   0.0  0.3 95.1 87.4 80.3 0.95 97.4 91.2 84.8   4.39

2   0.1  0.3   95.9 88.6 81.7 1.02 97.5 91.3 85.2   4.44

3   0.0 -0.3 100.0 99.3 98.0 0.62 97.0 92.1 87.7 11.52

3  -0.1 -0.3 100.0 99.6 98.7 0.66 96.8 91.8 87.3 12.97

3  0.0  0.3   95.5 87.5 80.9 0.62 96.9 90.7 84.7   5.09

3  0.1  0.3 95.7 88.1 81.5 0.64 96.9 90.8 84.8   4.83

Note:  This table reports the coverage probabilities of the t-statistic that tests whether the mean of yt  is equal to its true value.  The
following dgp is used to generate the data:  Yt = εt  + ν εt-1 + µ εt-q,   q = 2,3, where εt is an i.i.d standard normal random variable.  $ξT

indicates the estimated bandwidth parameter.  T  = 128 and the results are based  on 10,000 replications.   The results for VARHAC are
given in table 5.
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Table 1 reports the average bandwidth parameter obtained by these methods, and

the resulting confidence interval for a t-statistic to test whether the true mean is equal to

zero. It can be seen that the Newey-West procedure is better able to detect the higher-

order serial correlation, chooses a higher bandwidth parameter, and consequently has

better inference properties.  Of course, the Andrews (1991) method might yield superior

properties in an example where the autocovariances decline gradually and monotonically.

In practice, of course, the properties of the true autocovariances are unknown, so that it is

probably unwise to rely on an arbitrary time-series model to determine the bandwidth

parameter used to obtain an estimated HAC covariance matrix.  In particular, it seems

doubtful that the data-dependent bandwidth parameter should depend exclusively on the

first-order autocorrelations of the prewhitened residuals, when the residual vector has

already been prewhitened by an AR(1) filter.

An alternative to these methods would be to use a formal procedure to select the

best parametric model for V T( $ )ψ , and then to use the estimates of ST  and ST
q( )  implied

by this model.  In this case, however, one might consider simply using the parametric

estimator of ST  in constructing the HAC covariance matrix, rather than trying to

determine the data-dependent bandwidth parameter and then using a kernel-based

procedure.  This issue will be discussed further in Section 5.

Finally, this simulation experiment highlights the danger of viewing any particular

data-dependent bandwidth selection procedure as being fully “automatic”. As documented

in Table 1, the average bandwidth parameter chosen by QS-PW is less than one.  When

such a low bandwidth parameter is obtained for a sample of 128 observations, it would be

useful to check whether the resulting inferences are sensitive to an increase in the

bandwidth parameter.  Even with a sample of this length, it should be possible to estimate

more than one autocovariance with reasonable accuracy.

4.3.3 The Choice of W and the Costs of Imposing a Single Bandwidth Parameter.

As documented in equation (2.9), the optimality criterion used to derive the

optimal bandwidth parameter formula depends on a weighting matrix W.  The weighting

matrix is very important for the following reason.  To ensure that the estimated covariance

matrix is positive semi-definite, a single bandwidth parameter must be chosen for the
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entire vector V T( $ )ψ .  Thus, the data-dependent bandwidth parameter must compromise

in evaluating the serial correlation properties of the various elements of V T( $ )ψ .  In

particular, assigning more weight to specific elements of V T( $ )ψ  influences the estimated

bandwidth parameter $ξT .

Unfortunately, Andrews (1991), Andrews and Monahan (1992), and Newey and

West (1994) do not provide much guidance in choosing the weighting matrix W.  In

simulation experiments, Andrews (1991) and Andrews and Monahan (1992) choose W

such that a unit weight is given to the N-1 diagonal elements of S and S(q) that correspond

to the N-1 slope coefficients. All other elements of W are set equal to zero. The simulation

experiments of Newey and West (1994) assign unit weights to all diagonal and off-

diagonal elements of S and S(q)   that do not correspond to the intercept in the regression

model.  In both cases, these weighting schemes work reasonably well, because the

elements of V T( $ )ψ  have reasonably similar variance and autocorrelation properties.

In practice, however, using fixed equal weights can have very undesirable

consequences.  Since the optimal bandwidth formula is designed to minimize the

asymptotic MSE, the elements of V T( $ )ψ with the highest variance have the most influence

in determining the data-dependent bandwidth parameter.  Thus, if a particular regressor is

rescaled, its sample variance will change, and the autocorrelation properties of that

variable will receive a different weight in determining the bandwidth parameter.  We

illustrate this point with the following Monte Carlo experiment.  Consider the ordinary

least-squares estimator for the following linear model:

(4.2) yt   =   α   +   β  zt   +   εt,
( 1 - 0.9 L ) εt =   e1,t

     xt =   e2,t

          zt =   λ xt,

where α  = β = 0, e1,t and e2,t are i.i.d. normally distributed random variables.  The

parameter λ scales the explanatory variable.  The unconditional variance of εt and xt is

equal to 1.  The two elements of the vector Vt are εt and λεtxt .  Thus the first element is

a first-order AR process, and the second element is serially uncorrelated.  Varying the
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scale coefficient λ is equivalent to expressing the explanatory variable in different

measurement units.

To highlight the fundamental point, we do not use the prewhitening option, since

first-order prewhitening would make both components close to white noise.  For higher-

order processes of εt, the kernel-based estimators would encounter the same limitations as

those discussed here.  However, the discussion would be complicated by the

misspecification bias of the AR(1) coefficient in the prewhitening regression.  Also,

because this issue does not depend on the procedure to estimate α(q), we only report the

results for the QS estimator of Andrews (1991).

Theory suggests that the choice of a smaller bandwidth parameter in this

experiment should improve the finite-sample behavior of the standard error for the slope

coefficient, while a larger bandwidth parameter will tend to improve the accuracy of

inferences concerning the regression intercept.  As indicated in Table 2, the results for the

QS estimator are highly sensitive to the value of λ.  For the QS procedure, choosing a

larger value of λ raises the weight on the second element of Vt, reduces the average

bandwidth parameter chosen, and diminishes the accuracy of the estimated standard error

of the regression intercept.  The average bandwidth parameter across Monte Carlo

replications is equal to 23.4, 2.3, and 1.7 for values of λ equal to 1, 100, and 1000,

respectively.  As expected, a larger value of λ reduces the bandwidth parameter

and improves the behavior of the estimated standard error for the slope coefficient.

Table 2: The Limitations of a Single Bandwidth Parameter (QS kernel).

a: unit weight assigned to both diagonal elements.

λ 99%

α

95% 90% 99%

β

95% 90%

Average
$ξT

1 87.8 78.7 72.0 92.7 84.6 77.0 23.35

100 62.4 51.1 43.7 98.7 94.2 88.4   2.32

1000 56.6 45.2 38.4 98.7 94.4 88.9   1.70
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b: unit weight assigned only to the diagonal element of the corresponding parameter.

99%

α

95% 90% 99%

β

95% 90%

          Average  $ξT

          α              β

88.3 79.0 71.5 98.6 94.1 88.6 23.26       1.70

Note:  These tables report the 99%, 95%, and 90% confidence intervals for the t-statistics that test whether the least-squares estimates for
the constant α and the slope β are equal to its true value. The dgp is given in equation 4.2. The parameter λ is a scaling variable.  A higher
value for λ means that the variance of the independent variable increases. $ξT  indicates the estimated bandwidth parameter.  T  = 128 and
the results are based  on 10,000 replications.   The results for the VARHAC estimator are reported in table 7.

From this example, it is clear that a minimal requirement for the choice of W is that

it should make the optimal bandwidth parameter scale-independent.  However, it is not

clear how to do this.  Den Haan and Levin (1994) consider the use of the inverse of the

unconditional covariance matrix and the inverse of the spectral density at frequency zero

for the choice of W.10  It becomes somewhat more difficult to evaluate the optimal

bandwidth formula in equations (2.8) and (2.9) if a general weighting matrix is specified

instead of a vector of weights.  More importantly, while this approach resolves the scaling

problem, it cannot resolve the limitation that a single bandwidth parameter must be chosen

for the entire vector V T( $ )ψ  to ensure a positive semi-definite HAC covariance matrix.

Now suppose that the practitioner wishes to make inferences concerning a single

parameter in a linear regression problem.  In this case, the weighting matrix W can be

constructed with unit weight assigned to the appropriate element of V T( $ )ψ , and zero

weight assigned to all other elements.  The results of this approach are reported in panel b

of Table 2.  As documented in the table, this procedure improves the results drastically.

However, it is clear that the approach of assigning positive weight to only one

element of W cannot always resolve the limitation of using a single bandwidth parameter.

For example, when standard errors are calculated for non-linear problems, the standard

error of each parameter typically depends on the entire spectral density matrix, including

both diagonal and off-diagonal elements.  Similar considerations apply when restrictions

involving several parameters are tested in a linear regression framework.  Finally, when the

estimated spectral density matrix is used to construct an optimal weighting matrix to

                                                       
10  To implement the second suggestion, a preliminary estimate has to be constructed for the spectral
density at frequency zero.
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obtain efficient GMM estimates, all elements of the spectral density matrix are used, so

that zero weight should not be assigned to any particular element.  In general, therefore,

when the elements of V T( $ )ψ have different serial correlation properties, the resulting

data-dependent bandwidth parameter and HAC covariance matrix will inevitably reflect

a somewhat unpleasant compromise.

4.4  Complicated serial correlation patterns and kernel-based estimators.

To illustrate several of the topics discussed in this section, we summarize the

results of a Monte Carlo experiment performed by Christiano and Den Haan (1996).

In this experiment, we consider the following dgp:

 zt    =    0.4 zt-1  +  et,
(4.3)  yt    =     yt-1   +  zt,           and

yt
hp   =    HP(L) yt,

where et is an i.i.d. normally distributed variable with zero mean. HP(L) stands for the

Hodrick-Prescott  filter, which is an approximate high-pass filter that removes spectral

components with cycles greater than 32 periods.  Thus, the HP filter is commonly applied

to quarterly macroeconomic data to study the properties of business cycles.11

Figure 1: Autocorrelation coefficients of ( )yt
hp 2
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Note: This graph plots the autocorrelation function of ( yt

hp)2.  The law of motion for yt
hp  is given in equation (4.3.)

We analyze the confidence intervals of the t-statistic that tests whether the

standard deviation of HP(L)yt is equal to its population value.  Thus,

                                                       
11   See King and Rebelo (1993) and Christiano and Den Haan (1996) for a detailed discussion on the HP
filter.
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V yt t
hp( ) ( ) ( )ψ ψ0

2
0

2= − .  As seen in Figure 1, the serial correlation properties of Vt ( )ψ 0

are quite complicated.

Table 3: Inference in the presence of complicated serial correlation(QS-PW and NW-PW).

a: T = 128.

bandwidth
procedure

kernel prewhitening
order

5% 10% 90% 95% average $ξT

Andrews QS 0 18.6 22.9 15.0 9.4 10.0

Andrews Bartlett 0 19.0 23.2 16.4 9.8 10.7

NW Bartlett 0 20.9 24.4 18.0 11.7   5.0

Andrews QS 1 12.0 17.3   5.0 1.3   2.96

Andrews Bartlett 1 12.1 17.5   5.5 1.6   3.26

NW Bartlett 1 16.7 20.5   9.3 5.1 13.05

Andrews QS 2 18.8 22.2 15.7 9.7   0.95

Andrews Bartlett 2 18.8 22.3 15.5 9.6   0.71

NW Bartlett 2 18.8 22.1 15.5 9.6   3.18

b: T = 1000.

bandwidth
procedure

kernel prewhitening
order

5% 10% 90% 95% average $ξT

Andrews QS 0   8.6 15.4 12.6 6.8 17.30

Andrews Bartlett 0   9.0 15.5 13.0 7.1 24.26

NW Bartlett 0 11.1 17.7 15.2 9.0 11.79

Andrews QS 1   5.0   9.3   6.8 3.1   4.67

Andrews Bartlett 1   5.7 10.7   7.7 3.9   6.91

NW Bartlett 1   7.5 13.6 11.1 5.3 40.70

Andrews QS 2 10.8 17.3 15.1 9.1   0.98

Andrews Bartlett 2 10.8 17.4 15.0 9.2   0.74

NW Bartlett 2 10.7 17.3 15.0 9.1   5.86

Note:  These tables report the coverage probabilities of the t-statistic that tests whether the standard deviation of yt
hp is equal to its true

value.  The 5% (95%) and 10% (90%) columns report the frequency the t-statistic is less (higher) than the lower (upper) 5% and 10%
critical value. The dgp for yt

hp  is given by equation (4.3). $ξT  indicates the estimated bandwidth parameter.  The results are based on
1,000 replications. The corresponding results for VARHAC are reported in table 6.

The methods of Andrews (1991) and Newey and West (1994) are used to

determine the data-dependent bandwidth parameter for the Bartlett and QS kernels, with

the use of an autoregressive prewhitening filter of order 0, 1, or 2.  Table 3 summarizes
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the results.  From Table 3, we can make the following observations.  First, as mentioned

above, the results for the QS and Bartlett kernel are very similar.  Second, the distribution

of the t-statistic is highly skewed. In fact, analyzing two-sided confidence intervals can

give a misleading picture of the deviation of the t-statistic from its limiting distribution.

For example, when first-order prewhitening is used with the data-dependent bandwidth

method of Andrews (1991), the two-sided t test has an empirical size of 13.3% when the

nominal size is 10%.  However, this empirical size consists of 12.0% in the left tail and

1.3% in the right tail.  Christiano and Den Haan (1996) document that this skewness is

caused by the correlation between the estimated standard deviation and the spectral

estimate.  This reveals one weakness of using MSE as the underlying optimality criterion.

The practitioner who calculates a HAC covariance matrix is typically interested in drawing

accurate inferences about regression parameters rather than in the covariance matrix itself.

Table 3 also contains some rather surprising results, which provide some useful

insight into the characteristics of kernel-based methods.  First, compared with the absence

of prewhitening, the inference accuracy for two-sided tests improves dramatically with the

use of an AR(1) filter.  Given the complicated pattern of serial correlation, one would

expect second-order prewhitening to yield further improvements in performance, or

at least to provide about the same performance as first-order prewhitening.  In fact,

however, inferences associated with the AR(2) filter are much less accurate than those

associated with the AR(1) filter, and are only slightly better than no prewhitening at all.

Second, the AR(1) filter yields a larger improvement in inference accuracy when

using Andrews’ bandwidth selection method compared with the Newey-West method.

This result is surprising because the AR(1) prewhitened residuals have relatively low first-

order autocorrelation but continue to have complicated higher-order autocorrelation.  As

discussed in Section 4.3.2, we would expect the Newey-West method to detect the higher-

order serial correlation more effectively than Andrews’ method, which only considers the

first-order autocorrelation.

Some insight into these findings can be obtained by constructing each kernel-based

estimator using the true autocovariances of HP(L)yt . At any given value of the bandwidth

parameter ξ, Figure 2a confirms that the Bartlett and QS kernels yield very similar
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approximations to the true spectral density at frequency zero:  i.e.,  the deviation between

SB(ξ) and SQS(ξ) is always less than 10 percent of the value of  S.

Figure 2a: Comparison of Bartlett and QS spectral estimators.
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Figure 2b: Relative Bias of QS Spectral Estimator.
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As ξ →  ∞ , S(ξ) →  S, and the relative bias shrinks to zero.

Figure 2b indicates that the prewhitening order and the choice of bandwidth

parameter dramatically influence the relative bias, (SQS(ξ) - S) / S .  In the absence of

prewhitening, the QS kernel generally underestimates the true spectral density, and a fairly
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large bandwidth parameter (higher than 20) is required to achieve relative bias of less than

10 percent.  Thus, the severe size distortions in the first three rows of Table 3a can be

partly explained by the use of a relatively low bandwidth parameter, with an average value

of about 10 for Andrews’ (1991) method and only 5 for the Newey-West (1994) method.

As seen in Table 3b, increasing the sample length from T=128 to T=1000 causes a

doubling of the average bandwidth parameter, thereby reducing the bias of the kernel

estimator and improving the accuracy of subsequent inferences.  Similar results may be

observed when second-order prewhitening is performed.

In contrast, first-order prewhitening induces a very different pattern of bias.

When the bandwidth parameter is less than about 5, the QS kernel approximation (based

on the true autocovariances) over-estimates the true spectral density by up to 35 percent.

For larger bandwidth parameters, the relative bias is always less than 10 percent in

absolute value.  The middle three rows of Table 3a indicate that Andrews’ (1991)

bandwidth selection procedure yields an average bandwidth parameter of about 3, whereas

the Newey-West (1994) method yields a much higher average bandwidth parameter of

about 13.  Thus, one would expect the Newey-West estimator to yield more accurate

inferences than the Andrews estimator, but in fact, the opposite is true.  Christiano and

Den Haan (1996) have shown that the sample autocovariances of HP(L)yt
  exhibit

substantial downward bias for T=128, which coincidentally offsets the upward bias

induced by a low bandwidth parameter (as chosen by Andrews’ method), and exacerbates

the downward bias induced by a high bandwidth parameter (as chosen by the Newey-West

method).  This result is clearly rather specific to this particular dgp, but is useful for

illustrating the factors that can affect the finite-sample performance of alternative spectral

estimators.

4.5 Non-parametric estimation without a kernel.

We conclude this section on non-parametric procedures by discussing the R95

estimator proposed by Robinson (1995). Recall that the R95 estimator calculates the

spectral density of a vector Vt that can be written as  ut ⊗ xt.  To analyze the small sample

properties of this estimator in conducting inferences, we estimate the covariance of ut and

xt when the data are generated by the following dgp:
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where e et
x

t
u  and  are i.i.d N(0,1) random variables.  Note that when j is equal to one, the

distribution of ut is heteroskedastic (condition (2.31) is not satisfied) and when j is equal

to zero, then ut is homoskedastic (condition (2.31) is satisfied).  When the B∆ filter

is used, the product Vt displays a fairly simple pattern of serial correlation pattern, whereas

the BHP filter generates relatively complicated serial correlation.

Table 4 reports the confidence intervals obtained for a test of the null hypothesis of

no covariance between ut and xt .  The R95 estimator is compared with the QS estimator

of Andrews (1991) without prewhitening.  For this example, the results for the estimator

without prewhitening turned out to be somewhat better than the results with first-order or

second-order prewhitening.

First, consider the case with no heteroskedasticity.  Both estimators provide

reasonably accurate inferences when the degree of serial correlation is relatively limited

(for the B∆ filtered data) or when the sample is relatively large (T = 1000).  However,

when the sample is relatively small (T = 128) and the data display the complicated serial

correlation pattern induced by the BHP filter, the R95 estimator clearly outperforms the

kernel-based estimator.  For example, the R95 estimator yields a 10.8% empirical size for

a two-sided test with a 10% nominal size, compared with the 23.2% empirical size of the

kernel-based estimator.

In contrast, when the data exhibit heteroskedasticity, the R95 estimator yields

much less accurate inferences, whereas the inference accuracy of the kernel-based

estimator is not affected very much.  When the BHP filter is used, the ability of the R95 to

capture complicated patterns of serial correlation is offset by its inability to adjust for

heteroskedasticity.  When the B∆ filter is used, the accuracy of inferences is dominated by
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the effects of the heteroskedasticity.  Unfortunately, in the presence of heteroskedasticity,

the inference accuracy of the R95 estimator does not seem to improve in larger samples:

the confidence intervals for the R95 estimator are as distorted for T = 1,000 as for T= 128.

Table 4: Non-parametric estimation without a kernel.

a: Without Heteroskedasticity.

T serial

correlation

estimation

procedure

kernel prewhitening

order

5% 10% 90% 95% average
$ξT

128 B∆ Andrews QS 0 6.1 11.8 11.7 5.9 2.4

128 B∆ Robinson - - 5.1 9.9 10.4 5.4 -

129 BHP Andrews QS 0 10.1 15.9 19.5 13.1 10.4

128 BHP Robinson - - 4.6 10.1 12.9 6.2 -

1000 B∆ Andrews QS 0 5.4 10.0 10.2 4.7 3.8

1000 B∆ Robinson - - 5.1 9.3 9.6 4.3

1000 BHP Andrews QS 0 5.9 10.9 15.6 9.0 17.3

1000 BHP Robinson - - 3.7 8.2 11.7 6.0

b: With Heteroskedasticity.

T serial

correlation

estimation

procedure

kernel prewhitening

order

5% 10% 90% 95% average
$ξT

128 B∆ Andrews QS 0 6.3 12.0 11.3 5.9 2.4

128 B∆ Robinson - - 18.9 25.1 23.8 17.5 -

128 BHP Andrews QS 0 10.6 16.8 19.2 12.6 11.1

128 BHP Robinson - - 10.2 16.4 18.5 11.6 -

1000 B∆ Andrews QS 0 5.4 10.2 10.5 5.5 3.5

1000 B∆ Robinson - - 18.0 23.4 23.9 18.5

1000 BHP Andrews QS 0 6.0 10.9 13.9 8.3 18.9

1000 BHP Robinson - - 10.2 16.0 18.3 11.9

Note:  This tables reports the coverage probabilities of the t-statistic that tests whether the covariance of ut and xt  is equal to its true value
of zero.  The 5% (95%) and 10% (90%) columns report the frequency the t-statistic is less (higher) than the lower (upper) 5% and 10%
critical value. The dgp for yt

hp  is given by equation 4.4. $ξT  indicates the estimated bandwidth parameter.  The results are based on 3,000
replications
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5.  CHOICES FOR PARAMETRIC ESTIMATORS.

In this section, we analyze the choices required to implement a parametric spectral

estimator.  Section 5.1 considers the choice of a class of parametric models.  Section 5.2

evaluates the properties of alternative model selection criteria.  Section 5.3 documents the

advantages of being able to select a different lag-order for each element of Vt.  Finally,

Section 5.4 considers the potential benefits and pitfalls of applying a kernel-based spectral

estimator to the residuals of a parametric model that has been chosen by a model selection

criterion, as proposed by Lee and Phillips (1994).

5.1  The Class of Admissible Models.

In some empirical problems, the regression residuals are assumed to be generated

by a specific parametric model.  In a rational expectations model, for example, the Euler

equation residuals typically follow a specific moving-average (MA) process of known

finite order.  For these cases, the practitioner can utilize the procedures of Eichenbaum,

Hansen, and Singleton (1988) and West (1994).  These procedures yield consistent

covariance matrix estimates when the regression residuals are generated by an MA(q)

process for which the finite order q is known a priori.  Furthermore, West’s (1994)

estimator converges at the rate T -1/2, and in contrast to the truncated kernel estimator,

is guaranteed to be positive semi-definite.

In general, however, the dgp of the regression residuals is not known a priori.

In this case, the practitioner must use some criterion to select a particular model from a

prespecified class of parametric models.  Ideally, one would like to search within the class

of finite-order ARMA models, as Lee and Phillips (1994) consider in estimating the

spectral density of a scalar process.  In the multivariate context, however, vector ARMA

estimation and model selection is typically highly computationally intensive and often

subject to convergence failure or other numerical problems.

In contrast, VAR estimation and model selection can usually be implemented fairly

easily at low computational cost. Den Haan and Levin (1994) have shown that VAR

approximation yields a consistent covariance matrix estimate under very general

conditions.  For example, the regression residuals do not have to follow a finite-order

vector ARMA process, or even be covariance stationary.  Furthermore, as discussed in
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Sections 3.4 and 3.5 above, the VAR spectral estimator converges at a faster rate than any

positive semi-definite kernel-based estimator.  In particular, if the residual vector does

follow a finite-order MA or ARMA process, the VAR spectral estimator converges at a

geometric rate arbitrarily close to T -1/2.  Thus, restricting consideration to the class of

VAR models rather than the more general class of vector ARMA models has an

asymptotically negligible cost in MSE.

Even when consideration is limited to the class of VAR processes, the number of

admissible models can still be very large.  In estimating each VAR equation, one can allow

a different lag order for each variable.  However, this approach requires the estimation of

( )K N+ 1  alternative formulations of the equation, which is only computationally feasible

if the dimension N and the maximum lag order K are fairly small.  For each equation, these

computational requirements can be reduced by imposing the same lag order for all

variables, or by imposing a single lag order for all variables except the lagged dependent

variable.  As shown in the next subsection, allowing the lag order to vary across equations

can yield substantial benefits in finite samples.  In relatively high-dimensional systems,

however, one may wish to restrict attention to the class of VAR models in which a single

lag order is used for the entire system.

5.2 Model Selection Criteria.

As outlined in Judge et al. (1985, pp. 240-247), a number of different model

selection criteria can be expressed in the following form:

(5.1) ( )Ω Ω ΣK T T K K, , ,= ,

where ΣT,K is the estimated innovation variance of the model with K free parameters.

For example, Aikaike’s (1973) Information Criterion (AIC) sets Ω K,T  =  log( ΣT,K)

+  2K/T.  If the true dgp is an AR(po) process for some finite po, then asymptotically AIC

will select a lag order po ≤  p  ≤  po + c  with probability 1 for some positive constant c.

Shibata (1976) has demonstrated that AIC is not a consistent model selection criterion,

but overestimates the true lag order with positive probability, even as the sample length

grows arbitrarily large.  However, the probability of choosing an order p > po decreases

rapidly with p (cf. Shibata 1976; Lütkepohl 1985).  Furthermore, for lags greater than po,
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the AR coefficients converge in probability to zero as the sample length grows large.

Thus, the inconsistency of AIC uses up a finite number of extra degrees of freedom, but

does not affect the consistency or convergence rate of the AR spectral estimator.  Finally,

if the true dgp is an AR(∞ ) process with i.i.d. Gaussian innovations, then Shibata (1980,

1981) finds that AIC selects the asymptotically optimal growth rate for the AR lag order.

Schwarz’ (1989) Bayesian Information Criterion (BIC) sets Ω K,T  =  log( ΣT,K )

+  2K log(T)/T.  Thus, BIC assigns a higher penalty than AIC for additional parameters, so

that the lag order chosen by BIC is always less than or equal to that chosen by AIC.  BIC

has been shown to be a consistent model selection criterion when the true dgp is a finite-

order AR or finite-order ARMA process. Furthermore, in simulation experiments

comparing a variety of model selection criteria, Lütkepohl (1985) reports that BIC

achieves the best performance in choosing the correct AR order and minimizing the mean-

squared forecasting error.  As discussed in Section 3.5, there is also some asymptotic

justification for using BIC rather than AIC in AR spectral estimation, especially for dgps

with unknown heteroskedasticity and temporal dependence.  Nevertheless, simulation

experiments performed by Den Haan and Levin (1994) indicate that parametric HAC

covariance matrix estimates based on either AIC or BIC yield relatively similar inference

properties for a wide variety of dgps.

More generally, the optimality criterion in equation (5.1) is designed to capture the

tradeoff between parsimony and goodness-of-fit in finite samples. Nevertheless, this

criterion focuses on minimizing the innovation variance, which is not the only sample

statistic which is relevant for spectral estimation.  A parametric spectral estimator also

requires an accurate estimate of the sum of AR coefficients (and an estimate of the sum of

MA coefficients for ARMA spectral estimation).  Thus, a model selection criterion which

efficiently chooses the correct order or minimizes the innovation variance does not

necessarily yield the best spectral estimate.
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5.2.1  AR approximation of a finite-order MA processes.

Several of these issues can be illustrated using the experimental design considered

in Section 4.3.2, in which we estimate the mean of the following scalar process:

(5.2)   Yt  =  εt  +  ν εq t q
q

Q

−
=
∑

1
    and   $ψ T

tt
T Y
T

= =∑ 1 ,

where εt  is an i.i.d. normally distributed random variable with zero mean and unit

variance.  This experimental design sheds light on the extent to which an AR model can be

used to capture a finite-order MA process, and provides a useful comparison of AIC and

BIC.  Table 5 reports the average lag order chosen by AIC and BIC for this dgp, and the

implied confidence intervals for the test statistic of the null hypothesis of a zero mean,

using the parametric variance estimator constructed using each model selection criterion.

In particular, AR[AIC] refers to the VARHAC estimator constructed using the lag order

chosen by AIC, while AR[BIC] refers to the estimator constructed using BIC.

Table 5: VARHAC inferences for finite-order MA processes.

q ν µ 99%

AR [AIC]

95% 90%

Average

$KT 99%

AR [BIC]

95% 90%

Average

$KT

2   0.0 -0.3 98.7 94.9 90.3 2.55 99.4 96.9 93.8 1.25

2  -0.1 -0.3 99.0 95.7 91.4 2.70 99.6 97.7 95.1 1.39

2   0.0  0.3 97.9 92.9 87.8 2.52 97.4 91.9 86.5 1.12

2   0.1  0.3 97.7 92.8 87.8 2.60 96.9 91.7 86.2 1.20

3   0.0 -0.3 99.1 96.0 91.9 2.90 99.5 97.9 95.2 1.10

3  -0.1 -0.3 99.2 96.7 93.3 3.05 99.6 98.4 96.4 1.25

3  0.0  0.3 97.8 92.8 88.4 2.82 96.5 90.1 84.2 0.91

3  0.1  0.3 97.8 92.8 88.1 2.95 96.0 89.0 83.3 1.00

Note:  This table reports the coverage probabilities of the t-statistic that tests whether the mean of yt is equal to its true value.  The
following dgp is used to generate the data:  Yt = εt  + ν εt-1 + µ εt-q,   q = 2,3, where εt is an i.i.d standard normal random variable.  The
sample length T  = 128, and the results are based  on 10,000 replications.  The maximum AR lag order is equal to 5. AR[AIC] refers to the
VARHAC estimator constructed using the lag order chosen by AIC, while AR[BIC] refers to the estimator constructed using BIC. $KT

indicates the chosen lag order. The corresponding results for QS-PW and NW-PW are reported in table 1.

Since the true autocovariances vanish beyond lag 2 or 3, one might expect that
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a kernel-based spectral estimator would outperform the parametric AR estimator,

regardless of the choice of model selection criterion.   In fact, a comparison of Tables 1

and 5 demonstrates that both the AR[AIC] and AR[BIC] estimators yield more accurate

confidence intervals than the kernel-based estimator of Andrews (1991).  Compared with

the kernel-based procedure of Newey and West (1994), the inference accuracy associated

with the AR[AIC] estimator is clearly superior, while the accuracy of the AR[BIC]

estimator is roughly similar.  In effect, this experiment reveals the cost of ensuring a

positive semi-definite kernel estimate, as discussed in Sections 3.2 and 3.4:  by assigning

weights substantially less than unity to the second-order and third-order autocovariances,

the kernel-based estimators exhibit substantially more bias than the AR[AIC] estimator.

Nevertheless, the choice of model selection criterion has a substantial impact on

the behavior of the AR spectral estimator in this experiment.  As seen in Table 5, the

average AR order chosen by AIC is generally one or two lags higher than the average AR

order chosen by BIC.  For example, consider the case when ν = 0, µ = -0.3, and q = 2.

In this case, AIC chooses an AR order less than two in about 6 percent of the simulations,

whereas BIC chooses a zero lag order in about 40 percent of the simulations, and almost

never chooses a lag order equal to one. This experiment reveals the finite-sample

consequences of achieving consistent lag order selection:  due to its relatively high penalty

term, BIC often selects an AR lag order which is too low to achieve a satisfactory

approximation of a low-order MA process.

5.2.2  AR approximation of a process with complicated serial correlation.

The experimental design considered in Section 4.4 can also be used to compare the

properties of AIC and BIC.  Recall from Figure 1 that the autocorrelations of the process

( )yt
hp 2  decline slowly and non-monotonically, so that this dgp is useful for analyzing the

extent to which an AR approximation provides a reasonable spectral density estimate for a

process with general temporal dependence.

The bold curve in Figure 3 depicts the AR(h) approximation (for h = 1,...,40)
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of the spectral density at frequency zero of ( )yt
hp 2 , where the population moments are

used to calculate the AR(h) coefficients and the innovation variance.12  Figure 3 also

plots the values of AIC and BIC using the innovation variance implied by the AR(h)

approximation. The penalty terms are based on a sample length of 1000 observations.

Figure 3: Model Selection Criteria and Autoregressive Spectra.
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Note: This figure indicates the population value of the AR spectral density approximation using different lag-orders.  It also depicts the
population values of AIC and BIC using the innovation variance implied by an AR(h), again using population moments.  The penalty
terms are based on a sample length of 1000 observations.  The population moments are computed using estimated values from a sample of
100,000 observations.  The underlying series is the square of the random variable specified in equation 4.3.

As documented in Figure 3, neither AIC nor BIC is an optimal finite-sample lag

order selection criterion in estimating the spectral density at frequency zero.  Both model

selection criteria reach a minimum when the AR lag order is equal to two.  Such a low lag

order, however, leads to a strong downward bias for the spectral density estimate.

For this particular dgp, 1 - Akk =
∞∑ 1  is relatively small, and the square of this term shows

up in the denominator of the definition of the spectral estimate.  Therefore, small changes

in the sum of the AR coefficients have a large influence on the spectral density estimate.

Table 6 reports the results of using the AR spectral estimator to provide inferences

about the standard deviation of y t
hp .  Comparison with Table 3 indicates that the

confidence intervals implied by the AR spectral estimator are quite similar to those implied

                                                       
12  The population moments are computed using estimated values from a sample of 100,000 observations.
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by the kernel-based estimators:  i.e., the distribution of the test statistic is skewed, and the

tails are too thick relative to the limiting distribution.  Thus, even for sample lengths up to

T = 1000, neither parametric nor kernel-based spectral estimators appear to be very

successful in capturing the complicated pattern of temporal dependence.

Table 6: Inference in the presence of complicated serial correlation (VARHAC).

a: T = 128.

model

selection

maximum

lag order

5% 10% 90% 95% Average

$KT

AIC 4 16.2 20.6 15.0 8.7 2.35

AIC 8 16.10 20.9 14.7 8.6 2.78

BIC 4 16.5 20.3 14.9 8.8 1.92

BIC 8 16.6 20.9 15.5 9.2 1.93

b: T = 1000.

model

selection

maximum

lag order

5% 10% 90% 95% Average

$KT

AIC 10 10.0 14.5 12.5 7.2 4.48

AIC 20 9.9 14.4 12.0 6.7 5.58

BIC 10 11.0 16.2 14.8 8.7 2.05

BIC 20 11.0 16.5 15.3 8.9 2.05

Note:  These tables report the coverage probabilities of the t-statistic that tests whether the standard deviation of yt
hp is equal to its true

value.  The 5% (95%) and 10% (90%) columns report the frequency the t-statistic is less (higher) than the lower (upper) 5% and 10%
critical  value. The dgp for yt

hp  is given by equation 4.3. $KT  indicates the chosen lag order. The results are based on 1,000 replications
The corresponding results for QS-PW and NW-PW are given in Table 3.

Finally, it should be noted that the results in Table 6 are not sensitive to the choice

of the maximum lag order.  This is important, since no criterion is currently available to

select the maximum lag order in a finite sample:  the asymptotic theory simply prescribes a

maximum rate at which it can grow as a function of the sample length.  Adding a constant

to the maximum lag order does not change any of the asymptotic properties and, at least in

this simulation experiment, has little influence on the empirical distribution of the

t-statistic.
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5.3.  The Advantages of Different Lag Orders.

Section 4 highlighted the finite-sample limitations of imposing a single bandwidth

for the entire vector of residuals Vt.  Recall that the only reason for this restriction is to

ensure that the estimated covariance matrix is positive semi-definite.  In contrast, the

spectral density matrix of a parametric estimator is positive semi-definite by construction.

Thus, parametric estimators do not have to compromise in evaluating the serial correlation

properties of the elements of Vt, but a model selection criterion can be used to determine

the appropriate lag order for each individual element of Vt.  That is, if the model selection

criterion detects high-order autocorrelation in an element of Vt , then a high lag order will

be chosen for that particular element.

We illustrate this advantage of parametric spectral estimators using the

experimental design presented in Section 4.3.3.  The implied confidence intervals are

shown in Table 6.  Compared with the kernel-based results reported in Table 2a, it can be

seen that the VARHAC procedure yields much more accurate confidence intervals,

especially for the slope coefficient. Table 6b indicates that both AIC and BIC almost never

choose a zero lag order for the equation corresponding to the regression intercept, where

the dependent variable is highly persistent.  In contrast, AIC and BIC choose a zero lag

order in about 88 and 50 percent of replications, respectively, for the equation

corresponding to the slope coefficient, where the dependent variable is white noise.

Table 7: The Benefits of Using Different Lag Orders (VARHAC).

a: confidence intervals.

parameter 99%
BIC
95% 90% 99%

AIC
95% 90%

intercept 93.4 86.5 80.5 93.4 86.3 80.4

slope 98.8 95.0 90.1 98.5 94.5 89.3

b: frequency autoregressive lag orders chosen (percentages).
element of Vt

corresponding to 0 1
BIC

2 3 4 0 1
AIC

2 3 4
intercept 0 98.50 1.42 0.07 0.01 0 78.44 12.75 5.29 3.52

slope 88.41 10.24 1.14 0.19 0.02 49.56 25.17 12.05 6.96 6.26

Note: Panel a  reports the 99%, 95%, and 90% confidence intervals constructed using the VARHAC estimator for the t-statistics that test
whether the least-squares estimates for the intercept α and the slope coefficient β are equal to their  true values. The dgp is given in
equation 4.2. The sample length T  = 128, and the results are based on 10,000 replications. $KT  indicates the chosen lag order.  The
maximum lag order is equal to 4.  Panel b reports the lag orders chosen by the indicated model selection criterion.  The corresponding
results for kernel-based estimators re reported in Table 2.
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5.4  Applying a Kernel-Based Spectral Estimator to Prewhitened Residuals.

In this section, we outline some important issues which have been stimulated by

the work of Lee and Phillips (1994), and which deserve to be examined in greater detail in

subsequent research.  It is useful to consider the potential benefits and pitfalls of applying

a kernel-based estimator to the residuals of a parametric model, as outlined for the PL

procedure discussed in Section 2.4.  If the parametric lag order is high enough to remove

all serial correlation, then a non-parametric correction for serial correlation of the

prewhitened residuals must simply increase the variance of the final spectral estimate.

However, if the residuals display negligible serial correlation, then the data-dependent

bandwidth selection procedure of Andrews (1991) may be expected to yield a relatively

low bandwidth parameter, so that the kernel-based spectral estimator is nearly identical to

the estimated innovation variance of the parametric model.  In this case, applying a kernel-

based procedure to the prewhitened residuals would tend to have negligible influence on

the MSE of the final spectral estimate.  In contrast, when the parametric model is not very

effective in removing serial correlation, applying a kernel-based estimator to the

prewhitened residuals may yield substantial benefits.

Thus, the class of admissible models and the criterion used to select a particular

model are likely to be important in determining the benefits of applying a kernel-based

estimator to the residuals.  As seen in the simulation experiment reported in Section 5.2.2,

the AR lag order chosen by AIC is reasonably effective in approximating a low-order MA

process, whereas the lag order chosen by BIC tends to be too conservative.  Thus, at least

in this case, applying a kernel-based spectral estimator to the prewhitened residuals may be

more advantageous when the parametric model is chosen by BIC rather than AIC.

When the practitioner applies a kernel-based spectral estimator to the prewhitened

residuals, particular care should be given to the method of determining the bandwidth

parameter.  For example, when an ARMA model is used to prewhiten the data, any

remaining serial correlation will typically be exhibited at relatively long lag lengths.

The data-dependent bandwidth selection procedure of Andrews (1991), which only

considers the first-order autocorrelation, would appear to be unlikely to detect this form

of serial correlation.  As discussed in Section 4.3.2, the bandwidth selection procedure of

Newey and West (1994) considers a larger number of autocovariances, making it
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somewhat more effective in detecting higher-order serial correlation.  However, when the

parametric model has successfully prewhitened the residuals, this feature may generate a

high bandwidth parameter and induce excessive sampling variation.

6. CONCLUDING COMMENTS.

Kernel-based and parametric covariance matrix estimation procedures are both

consistent under fairly general conditions of heteroskedasticity and serial correlation.

Nevertheless, each procedure requires the practitioner to make choices which have

important implications in finite samples.  Since the estimated HAC covariance matrix

can be very sensitive to the method of determining the bandwidth parameter (for a kernel-

based procedure) or the lag order (for a parametric procedure), it would generally be

appropriate to utilize more than one approach in estimating the covariance matrix.

Fortunately, as seen in Section 2, a number of alternative procedures are available

for this purpose.  However, if only a single HAC covariance matrix estimation procedure

is to be used, we would recommend the parametric approach for the following reasons:

(1)  The parametric VAR or ARMA estimation procedures can utilize a measure of

the goodness-of-fit in determining the appropriate lag order in finite samples.

In particular, a model selection criterion can be used to evaluate the tradeoff between

parsimony and goodness-of-fit.  Such criteria do not necessarily yield the optimal lag

order, but seem to avoid the most egregious errors in practical applications.

In contrast, data-dependent bandwidth selection methods require the calculation of

initial estimates of the spectral density and its first or second derivative at frequency zero.

As documented in Section 4.3, poor initial spectral estimates can lead to rather absurd

values for the bandwidth parameter, inducing excessive bias and/or variance of the kernel-

based covariance matrix estimate, and severe distortions in subsequent inference.

(2)  Kernel-based estimators incur substantial bias to ensure a positive semi-

definite covariance matrix: weights less than unity are assigned to autocovariances at lags

less than the bandwidth parameter, with the weights declining toward zero as the

autocovariance lag increases.  In contrast, the VARHAC estimator exhibits essentially

the same bias as the truncated kernel estimator, which places unit weight on all

autocovariances up to the bandwidth parameter.  However, the truncated kernel does not
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ensure a positive semi-definite covariance matrix, whereas the VARHAC estimator is

positive semi-definite by construction.  Thus, as discussed in Section 3, the VARHAC

estimator converges to the true covariance matrix at a faster rate than any positive semi-

definite kernel-based estimator.  This bias differential is also evident in the simulation

experiments reported in Sections 4.3.2 and 5.2.1:  even for a low-order MA process, the

AR spectral estimator provides a better approximation than the kernel-based estimators.

(3)  To ensure that the estimated covariance matrix  is positive semi-definite,

kernel-based procedures must utilize a single bandwidth parameter in calculating all

elements of the spectral density matrix at frequency zero.  If some components of the

vector of residuals exhibit high-order autocorrelation, while other components are close to

white noise, then imposing the same bandwidth for both sets of variables tends to generate

very ill-behaved estimates of the spectral density matrix at frequency zero.

In contrast, parametric estimators do not face such an unpleasant compromise:  a different

lag order can be chosen for each component of the residual vector, since the parametric

estimator of the spectral density matrix is positive semi-definite by construction.
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