Simulating models with heterogeneous agents

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Individual agent

- Subject to employment shocks ($\varepsilon_{i,t} \in \{0,1\}$)
- Incomplete markets
 - only way to save is through holding capital

α

- borrowing constraint $k_{i,t+1} \ge 0$
- Competitive firms, thus competitive prices

•
$$w_t = (1 - \alpha) z_t \left(\frac{K_t}{\overline{l}L_t}\right)$$

• $r_t = \alpha z_t \left(\frac{K_t}{\overline{l}L_t}\right)^{\alpha - 1}$

Parameterized CDF

Individual agent

$$\max_{\{c_{i,t},k_{i,t+1}\}_{t=0}^{\infty}} E \sum_{t=0}^{\infty} \beta^{t} \ln(c_{i,t})$$

s.t.

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \overline{l} \varepsilon_{i,t} + \mu w_t (1 - \varepsilon_{i,t}) + (1 - \delta) k_{i,t}$$
$$k_{i,t+1} \ge 0$$

Laws of motion

- z_t can take on two values
- $\varepsilon_{i,t}$ can take on two values
- probability of being (un)employed depends on z_t
- transition probabilities are such that unemployment rate only depends on current z_t
- Thus $u_t = u^b$ if $z_t = z^b$ and $u_t = u^g$ if $z_t = z^g$ with $u^b > u^g$.

Complexity of individual problem

- for given process of r_t and w_t this is a relatively simple problem
- state variables?
- constraint?

What aggregate variables do agents care about?

- r_t and w_t
- They only depend on aggregate capital stock and z_t
- !!! This is not true in general for equilibrium prices
- Agents are interested in all information that forecasts K_t
- Thus, complete cross-sectional distribution of employment status and capital levels matters

Equilibrium

- Continuum of agents
- Individual policy functions that solve the agent's maximization problem
- A wage and a rental rate given by equations above.
- A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.
 - f_t = beginning-of-period cross-sectional distribution of capital and the employment status after the employment status has been realized.

$$f_{t+1} = \mathbf{Y}(z_{t+1}, z_t, f_t)$$

Two different ways to go

- Simulate a panel with a large number of agents
 - This uses Monte Carlo integration to calculate cross-sectional moments
- Use tools from numerical literature
 - grid method that does not require the inverse of the policy function
 - grid method that requires the inverse of the policy function
 - non-grid method

What is given?

- A policy function $k'(k_{i,t}, \varepsilon_{i,t}, s_t)$
 - *s_t*: the aggregate state variables
- initial distribution for t = 1
 - characterizes the density of capital holdings of the employed and unemployed.

- Fine grid with nodes: κ_i , $i = 0, 1, \cdots, \chi$
- Only mass AT grid points
 - $p_{i,t}^{\varepsilon}$: mass of agents with $k_t^{\varepsilon} = \kappa_i$, $i = 0, 1, \cdots, \chi$
 - ε : employment status
 - no mass in between grid points
- If $k'_i \ge 0$ is binding $\implies p^{\varepsilon}_{0,t} > 0$ (and CDF has some jumps at other points)

Parameterized CDF

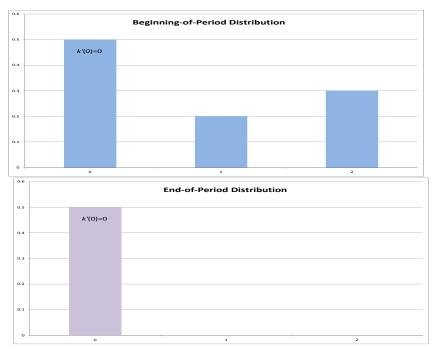
Grid method I

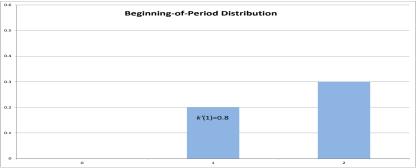
- Fix employment status
 - remain within the period t for now
- Nodes correspond with *beginning-of-period* t distribution

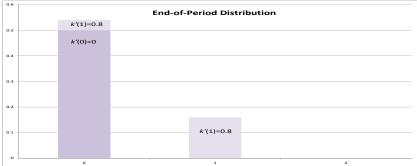
- focus on node j with mass $p_t^{\varepsilon,j}$ and capital value κ_j
- find *i* such that $k'(\kappa_j, \varepsilon, \cdot)$ satisfies

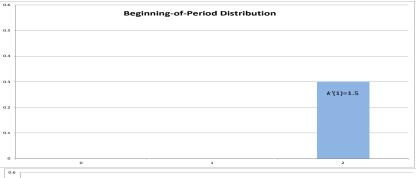
$$\kappa_{i-1} < k'(\kappa_j, \varepsilon, \cdot) \leq \kappa_i$$

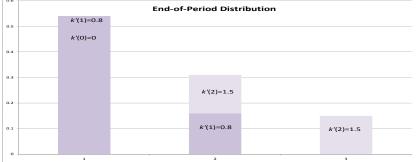
• if
$$k'(\kappa_j, \varepsilon, \cdot) > \kappa_{\chi}$$
, $i = \chi$











• Set end-of-period fractions:

$$f_t^{\varepsilon,i} = 0 \quad \forall i$$

- Go through all nodes *i* and allocate beginning-of-period p^{ε,j}_t (for relevant *j*) to end-of-period f^{ε,i}_t:
- if $k'(\kappa_j, \varepsilon, \cdot) < \kappa_{\chi}$ then

$$\begin{split} \omega_t^{i,j} &= \frac{k'(\kappa_j,\varepsilon,\cdot)-\kappa_{i-1}}{\kappa_i-\kappa_{i-1}} \\ f_t^{\varepsilon,i-1} &= f_t^{\varepsilon,i-1} + p_t^{\varepsilon,j} \left(1 - \omega_t^{i,j}\right) \\ f_t^{\varepsilon,i} &= f_t^{\varepsilon,i} + p_t^{\varepsilon,j} \omega_t^{i,j} \end{split}$$

• if $k'(\kappa_j, \varepsilon, \cdot) \ge \kappa_{\chi}$ then

$$f_t^{\varepsilon,\chi} = f_t^{\varepsilon,\chi} + p_t^{\varepsilon,j}$$

Parameterized CDF

Grid method I

• Use transition laws to go from end-of-period t to beginning-of-period t + 1 distribution

Next period's distribution?

- g_{εtεt+1}z_tz_{t+1}: mass of agents with employment status ε_t that will have employment status ε_{t+1}, conditional on z_t and z_{t+1}
- For each combination of values of z_t and z_{t+1} we have

$$g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}} + g_{10z_t z_{t+1}} + g_{11z_t z_{t+1}} = 1$$

• Fraction of agents with employment status $\varepsilon_t = 0$ that will have employment status $\varepsilon_{t+1} = 0$.

$$\frac{g_{00z_t z_{t+1}}}{g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}}}$$

• The other 3 population moments can be defined the same way.

For

Next period's distribution?

Next, we use the population transition probabilities for each node (Since probabilities are exogenous and do not depend on wealth). For $\varepsilon_{t+1} = 0$ we get

$$p_{t+1}^{0,i} = \frac{g_{00z_t z_{t+1}}}{g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}}} f_t^{0,i} + \frac{g_{10z_t z_{t+1}}}{g_{10z_t z_{t+1}} + g_{11z_t z_{t+1}}} f_t^{1,i}$$

$$\varepsilon_{t+1} = 1 \text{ we get}$$

$$p_{t+1}^{1,i} = \frac{g_{01z_t z_{t+1}}}{g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}}} f_t^{0,i} + \frac{g_{11z_t z_{t+1}}}{g_{10z_t z_{t+1}} + g_{11z_t z_{t+1}}} f_t^{1,i}$$

- Grid method I simply goes through beginning-of-period distribution and allocates each bin to relevant end-of-period bins.
- Grid method II starts at the end-of-period distribution and determines which beginning-of-period bins would end up there.
 This requires calculating the inverse of the policy funciton.

Grid method II

- Distribution uniformly distributed between grid points
 - CDFs: two piece-wise linear splines, $P_t^{\varepsilon=0}(k)$ and $P_t^{\varepsilon=1}(k)$

- Calculate the end-of-period distribution as follows
 - nodes correspond to the *end-of-period* distribution
 - go through the nodes, κ_i , one by one
 - calculate the beginning-of-period capital stock at which the agent would have chosen the value at the grid point, $x_t^{\varepsilon,i} = k'^{,inv}(\kappa_i, \varepsilon_t, s_t)$
 - CDF at grid point is equal to P^ε_t(x^{ε,i}) (Note the two time subscripts)

$$F_t^{\varepsilon,i} = \int_0^{x_t^{\varepsilon,i}} dP_t^{\varepsilon}(k) = \sum_{i=0}^{\overline{i_{\varepsilon}}} p_t^{\varepsilon,i} + \frac{x_t^{\varepsilon,i} - \kappa_{\overline{i_{\varepsilon}}}}{\kappa_{1+\overline{i_{\varepsilon}}} - \kappa_{\overline{i_{\varepsilon}}}} p_t^{\varepsilon,\overline{i_{\varepsilon}}+1},$$

where $\overline{i_{\varepsilon}} = \overline{i}(x_t^{\varepsilon,i})$ is the largest value of i such that $\kappa_i \leq x_t^{\varepsilon,i}$

• Calculate next period's beginning-of-period distribution using the transtion laws

Next period's distribution?

Next, we use the population transition probabilities for each node (Since probabilities are exogenous and do not depend on wealth). For $\varepsilon_{t+1} = 0$ we get

$$P_{t+1}^{0,i} = \frac{g_{00z_t z_{t+1}}}{g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}}} F_t^{0,i} + \frac{g_{10z_t z_{t+1}}}{g_{10z_t z_{t+1}} + g_{11z_t z_{t+1}}} F_t^{1,i}$$

For $\varepsilon_{t+1} = 1$ we get

$$P_{t+1}^{1,i} = \frac{g_{01z_t z_{t+1}}}{g_{00z_t z_{t+1}} + g_{01z_t z_{t+1}}} F_t^{0,i} + \frac{g_{11z_t z_{t+1}}}{g_{10z_t z_{t+1}} + g_{11z_t z_{t+1}}} F_t^{1,i}$$

and

$$\begin{array}{rcl} p_{t+1}^{\varepsilon,0} & = & P_{t+1}^{\varepsilon,0} \\ p_{t+1}^{\varepsilon,i} & = & P_{t+1}^{\varepsilon,i} - P_{t+1}^{\varepsilon,i-1} \end{array}$$

Parameterized cross-sectional distribution

- Grid methods are likely to require a lot of nodes (1000 is typical)
- For some procedures that is costly
- Not clear you need such precise information

Parameterized cross-sectional distribution

- Grid methods are likely to require a lot of nodes (1000 is typical)
- For some procedures that is costly
- Not clear you need such precise information
- Algan, Allais, and Den Haan (2006) propose to use polynomials
 - $P(k;\rho_t)$ is a polynomial with in period t=1 coefficients equal to ρ_1
 - Using Simpson quadrature to calculate end-of-period moments
 - Use transition laws to calculate next period's beginning-of-period moments
- You need a way to find ho_2 given values for moments in period 2

Fitting a distribution given moments:

• Find N elements of ρ such that

$$\int_{0}^{\infty} [k - m(1)] P(k;\rho)dk = 0$$
$$\int_{0}^{\infty} [(k - m(1))^{2} - m(2)] P(k;\rho)dk = 0$$
$$\dots$$
$$\int_{0}^{\infty} [(k - m(1))^{N} - m(N)] P(k;\rho)dk = 0$$
$$\int_{0}^{\infty} P(k;\rho)dk = 1$$

where m(n) is the n^{th} moment

Fitting a distribution given moments

- This can be a nasty problem
- But problem made easy by using

•
$$P(k;\rho) = \rho_0 \exp \left(\begin{array}{c} \rho_1 [k - m(1)] + \\ \rho_2 [(k - m(1))^2 - m(2)] + \dots + \\ \rho_N [(k - m(1))^N - m(N)] \end{array} \right)$$

Fitting a distribution given moments

f

• For this functional form the coefficients ho can be found by

$$\min_{\rho_1,\rho_2,\cdots,\rho_N}\int_0^\infty P(k,\rho)dk$$

- The first-order conditions correspond exactly to the condition that the first N moments of P(k, ρ) should correspond to the set of specified moments.
- ρ_0 is determined by the condition that the density integrates to one.

Fitting a distribution given moments

- Knowing the Hessian is useful for optimization routines.
- The Hessian (times ρ_0) is given by

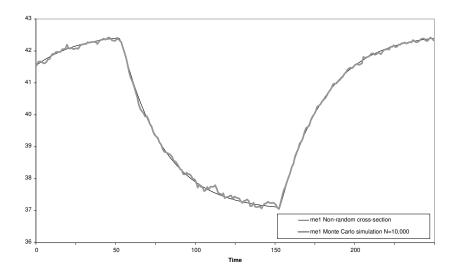
$$\int_{0}^{\infty} X(m(1),\cdots,m(N)) X(m(1),\cdots,m(N))' P(k,\rho) dk, \quad (1)$$

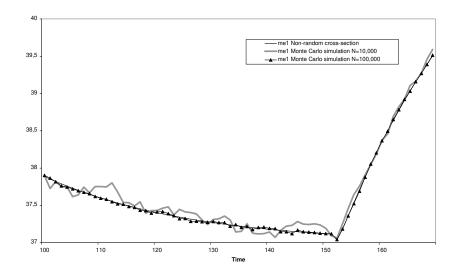
where X is an $(N \times 1)$ vector and the i^{th} element is given by

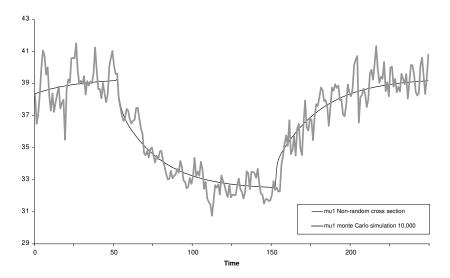
$$(k - m(1))$$
 for $i = 1$
 $(k - m(1))^{i} - m(i)$ for $i > 1$ (2)

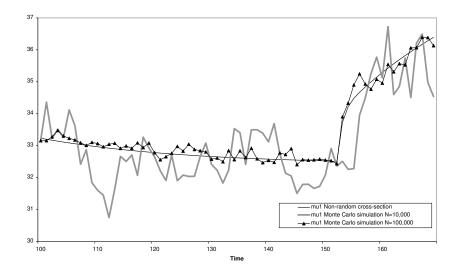
Avoiding sampling noise

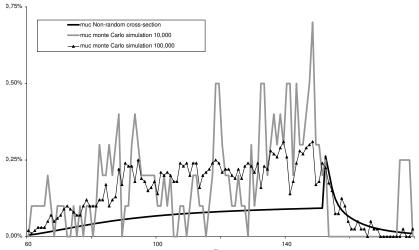
- What if you really do like to simulate a panel with a finite number of agents?
 - Impose truth as much as possible: if you have 10,000 agents have exactly 400 (1,000) agents unemployed in a boom (recession)
 - Even then sampling noise is non-trivial
 - This is done in the graphs below, but still the results are not accurate











Time

References

- Algan, Y., O. Allais, W.J. Den Haan, 2008, Solving heterogeneous-agent models with parameterized cross-sectional distributions, Journal of Economic Dynamics and Control
 - simulates and solves model with parameterized expectation
- Den Haan, W. J., and P. Rendahl, 2010, Solving the incomplete markets model with aggregate uncertainty using explicit aggregation, Journal of Economic Dynamics and Control
 - article that develops Xpa
- Young, E. R., 2010, Solving the incomplete markets model with aggregate uncertainty using the Krusell-Smith algorithm and non-stochastic simulations, Journal of Economic Dynamics and Control
 - introduces the first grid method