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4.1 Introduction and preliminaries

In this Chapter, I describe the Paramaterized Expectations Algorithm,
which can be used to solve dynamic stochastic general equilibrium (DSGE)
models. Two di¤erent versions will be discussed. The �rst is called stochas-
tic PEA and the second non-stochastic PEA. The terminology does not
refer to whether the model being solved is stochastic or not. That is, both
procedures are meant to solve stochastic models. The terminology refers to
whether the numerical procedure itself has stochastic elements. The sto-
chastic version uses a simulated series for the innovations of the exogenous
driving process and the outcome, thus, depends on the particular draw
used. By increasing the sample size one can, of course, reduce the role of
sampling variation. The solution obtained with the non-stochastic version
does not have this dependence on a particular random realization.
Both versions allow for higher-order approximations quite easily. The

advantage of stochastic PEA is that it is intuitive and easy to program.
Non-stochastic PEA is a projection procedure and is much more e¢ cient.
That is, with non-stochastic PEA it takes typically less computing resources
to get an accurate solution. For simple problems this may not matter very
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much because by using a large enough sample of simulated data an accurate
solution can be obtained with stochastic PEA as well. For more complex
problems, however, computing e¢ ciency is important.

4.1.1 Model and speci�cation of the numerical problem

I will illustrate the numerical algorithms using the stochastic neo-classical
growth model.
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fct+j ;kt+1+jg1j=0
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s.t. ct+j + kt+1+j = zt+jk�t+j + (1� �)kt+j

kt is given.

The law of motion of aggregate productivity, zt, is given by

ln(zt) = � ln(zt�1) + �"t; "t � N(0; 1) (4.1)

A solution to this model consists of a policy function for consumption and
captial. The arguments of these policy functions are the state variables,
i.e., kt and zt. Thus, we are looking for a function ct = c(kt; zt) and a
function kt+1 = k(kt; zt). These two functions have to satisfy the �rst-order
conditions

c�
t = Et
�
�c�
t+1

�
�k��1t+1 + 1� �

��
(4.2)

ct + kt+1 = ztk
�
t + (1� �)kt (4.3)

Numerical solutions of these functions are obtained for one speci�c set of
values for the structural parameters. That is, at each point of the numeri-
cal algorithm, numerical values of the structural parameters are �xed and
known. In fact, one of the �rst things one typically does in a program is to
assign numerical values to all structural parameters.
Even though we are only looking for policy functions for one particular

set of parameter values, this is still a tough problem. The reason is that we
do not know the functional form of the policy function. And the space of
functions is a large space to search for a solution.

4.1.2 Special case with known solution

Although one almost always has to rely on numerical procedures to solve
DSGE models there is one model for which we known the solution in ana-
lytical form. This is the case when 
 = 1 (i.e., log utility) and � = 1 (i.e.,
complete depreciation). In this case, the solutions for the consumption and
the investment function are given by

ct = c(kt; zt) = (1� ��)ztk�t (4.4)
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kt+1 = c(kt; zt) = ��ztk
�
t (4.5)

Students often want to know how to �nd such a solution. The truth is
that I do not know. It probably was discovered by luck or by trial and
error. It is also not that important, because it is unlikely there are many
interesting models that have an analytical solution. It is important to know,
however, how to check whether a proposed solution is indeed a solution.
A true solution satis�es the budget constraint and the Euler equation. It
is trivial to see that the proposed solutions satisfy the budget constraint.
To see whether they satis�es the Euler equation, we simply plug in these
functions into the Euler equation.

c�1t = Et
�
�c�1t+1�k

��1
t+1

�
(4.6)
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(4.8)

Note that the expectations operator is no longer used because there are no
stochastic elements on the right-hand side anymore.1 Eliminating ztk�t on
both sides and using the solution one more time, we get

1 = �
�(��)��1 (ztk

�
t )
�

(��ztk�t )
a

= 1 (4.9)

4.1.3 Approximating polynomials

Underlying our numerical solution procedure is Weierstrass theorem. It says
the following. If f(x) is a continuous function on [a; b], then there exists a
polynomial that is arbitrarily close to f(x). That is, for all " > 0, there is
an nth -order polynomial, pn(x), such that2

8x 2 [a; b]; jf(x)� pn(x)j � ":

In other words, the class of polynomials is dense in the space of continu-
ous functions. There are other functions that have the same property, for
example, neural nets. But here we will use polynomials.

1This doesn�t mean that outcomes are not stochastic. But zt+1 a¤ects two outcomes
next period, marginal utility of consumption and the marginal product of capital. Make
you understand why zt+1 pushes these two variables in opposite directions so that it is
at least in principle possible that zt+1 does not a¤ect the product of these two variables.

2Note that the sup norm is used to evaluate whether pn(x) is "close" to f(x). If
weaker norms are used, such as the L2 norm, then f(x) doesn�t have to be continuous.
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How does this help us? First, we start with a low-order polynomial, typ-
ically a �rst-order polynomial. Now we have pinned down the functional
form and have reduced the problem from �nding an unknown functional
form to �nding the �nite number of coe¢ cients of this low-order polyno-
mial. Next, we increase the order of the polynomial until we have found an
accurate solution. Although Weierstrass theorem underlies the motivation
for using polynomials, it actually is a bit misleading to refer to it here.
At this point you shouldn�t worry about it, but I�ll return to it in Section
4.4.2.

4.2 Stochastic PEA

4.2.1 Which function to approximate?

Recall that we are looking for the policy functions c(kt; zt) and k(kt; zt).
These two functions have to satisfy the �rst-order conditions

c�
t = Et
�
�c�
t+1

�
�k��1t+1 + 1� �

��
(4.10)

ct + kt+1 = ztk
�
t + (1� �)kt (4.11)

Also, although I use symbols to indicate the structual parameters, the
reader should keep in mind that we know the numerical value of all struc-
tural parameters.
Let�s think about the conditional expectation in Equation (4.10). It is

supposed to be the best forecast of �c�
t+1
�
�k��1t+1 + 1� �

�
. What variables

would be useful in making this forecast in period t? Those are the state
variables, kt and zt. That is, we know that this conditional expectation is
a function of the state variables, that is,

g(kt; zt) = Et
�
�c�
t+1

�
�k��1t+1 + 1� �

��
(4.12)

Another way to realize that the conditional expectation must be a func-
tion of the state variables is that in equilibrium the conditional expectation
(the right-hand side of Equation 4.10) is equal to the marginal utility of
consumption (the left-hand side of Equation 4.10). The conditional expec-
tation is, thus, simply a function of consumption and consumption is a
function of the state variables.
If we make explicit that the consumption and capital choice are also

functions of the state variables, then the model can be written as

c(kt; zt)
�
 = g(kt; zt) (4.13)

c(kt; zt) + k(kt; zt) = ztk
�
t + (1� �)kt (4.14)

When solving a DSGE model one has to choose which function to ap-
proximate. Typically, one has a choice. In this model, the choices are the
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conditional expectation, the consumption function, and the capital func-
tion. If one has solved for one, then the others are easily determined. If one
knows the conditional expectation, g(kt; zt), then one can solve for the con-
sumption function from the Euler equation and then for the capital function
from the budget constraint. If one chooses to approximate the consumption
function, then the capital function is given by the budget contraint and the
conditional expectation from the Euler condition. Note that in practice it
makes a di¤erence. For example, suppose that one uses a linear approxi-
mation for the consumption function. Then the capital choice is not linear
because it is given by the budget constraint which has non-linear elements.
One should approximate the function that is most likely to be close to a

low-order polynomial. For the neoclassical growth model it doesn�t matter
very much because all functions are approximated quite well with a low-
order polynomial (except when risk aversion and the amount of uncertainty
are high). But in other models the expectation may be a bit smoother
than other functions in the model because it is an expectation. Anyway,
the PEA algorithm puts the conditional expectation at the center of the
solution algorithm and that is the function that is approximated with a
�exible functional form. So let�s get started.

4.2.2 With what to approximate the conditional expectation

Let Pn(s; �n) stand for the n
th -order polynomial of the vector s with coe¢ -

cients �n. It is important to realize that by using monotone transformations
one actually has a lot of �exibilities even if one is restricted to use polyno-
mials. Here we approximate g(kt; zt) as follows

g(kt; zt) � exp(Pn(ln(kt); ln(zt); �n)

That is, we approximate the log of the conditional expectation with a poly-
nomial in the logs. There are several reasons for doing this. The main reason
is that it has turned out to work very well in practice (and in more complex
models as well). But this result may not have been completely unexpected.
For example, by using the exponential of a polynomial we ensure that the
contional expectation is always positive. Also, in many economic models,
it is more likely that elasticities are constant than partial derivatives. This
motivates using (natural) logarithms. Finally, the analytical solution for the
special case discussed above has this form. To see why �rst note that the
conditional expectation, i.e., the right-hand side, is equal to the marginal
utility of consumption, i.e., the left-hand side. Thus,

g(kt; zt) = c
�

t = c�1t = 1

(1���)ztk�t
= expf� ln(1� ��)� � ln(kt)� ln(zt)g

= exp fP1(ln(kt); ln(zt); [� ln(1� ��);��;�1]0g
(4.15)
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4.2.3 How to simulate?

Suppose you are given

1. the values of the coe¢ cients of the approximating polynomial, ��n,

2. an initial value for aggregate productivity, z1, and a sequence of re-
alizations for the innovations of the aggregate productivity shock,
f"tgTt=2, and

3. an initial capital stock, k1.

Would it then be possible to generate a time series for ct and kt+1?
Sure it is and it is very easy. First, given the innovations "t it is trivial
to construct a time series for zt. In period 1, use k1 and z1 together with
Pn(ln(k1); ln(z1); ��n) to get an (approximating) value for the conditional
expectation. From the Euler equation one can then solve for consumption.
That is,

c1 = [exp(Pn(ln(k1); ln(z1); ��n))]
�1=
 (4.16)

Plugging this value for consumption in the budget constraint gives k2.
Iterating on this scheme gives the whole time series.

4.2.4 The preliminaries of the algorithm

The algorithm consists of an iterative scheme. Before starting the iterative
scheme, we have to know the following:

1. The numerical values of the structural parameters.

2. A long time series of realizations of the aggregate productivity process
f"tgTt=2 and an initial value for aggregate productivity, z1. The draws
for "t can be obtained using a numerical random number generator.
A sensible value for z1 would be the steady state value. Now you have
enough information to generate a series fztgTt=1. This series should
never change. Even if you change, for example, the order of the poly-
nomial or a structural parameter, it is better to keep the exact same
series. Moreover, you want to make sure you draw the same random
numbers if you rerun your program. This can be accomplished by
�xing the seed of the random number generator.

3. An initial capital stock, k1. Like the initial value for zt, it should be
sensible. That is, it shouldn�t be far from where the economy operates.
Typically, the steady state value is �ne.

4. An initial value for the coe¢ cients of the approximating polynomial,
�1n. The superscript refers to the number of the iteration, so it is equal
to 1 in the �rst round. After one has obtained a numerical solution
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for �n, one may consider a higher-order solution. But in obtaining
one particular solution the order of the approximation is �xed. The
subscript of � refers to the order of the polynomial.

4.2.5 Iterative procedure

The algorithm uses the following iterative procedure

Step 1: Simulate.

Simulate the economy for T periods. In particular, calculate ct; kt+1, and
the argument inside the conditional expectation, that is,

yt+1 = �c
�

t+1

�
�zt+1k

��1
t+1 + 1� �

�
: (4.17)

Step 2: Update coe¢ cients.

Update the coe¢ cients of the approximating polynomial, that is, calculate
�2n.
The algorithm repeats itself until the values of nin have converged. How

to simulate has already been explained above, so I only have to explain the
second step. Besides describing the mechanics, I also want to give a little
bit of an economy story behind the iterative procedure.
One can think of the polynomial that approximates the conditional ex-

pectation in the ith -iteration, Pn(ln(kt); ln(zt); �in) as the beliefs of the
agents about the expected value of �c�
t+1

�
�k��1t+1 + 1� �

�
. Based on these

beliefs agents make the consumption and capital decision (step 1 of the
algorithm). In step 1, the program generates a long time series accord-
ing to these beliefs. Now suppose that agents ask themselves whether they
can update their beliefs using the available time series. It is important
to remember, that we restrict agents to use a particular functional form,
namely an nth -order polynomial. So the question is what the best values for
the coe¢ cients of the approximating polynomial are. But this is a typical
econometric problem. By de�nition of a conditional expectation we have
that

yt+1 = g(kt; zt) + ut+1; (4.18)

where ut+1 is a prediction error and, thus, satis�es all the standard as-
sumptions of a regression error. The idea is to use the same logic for the
approximating polynomial. Thus,

yt+1 = exp(Pn(ln(kt); ln(zt); �n)) + eut+1 (4.19)

Recall that in step #1 we have calculated time series for yt+1, kt, and zt.
In step #2, we �rst use least-squares to �nd the value of � that gives the
best �t to Equation (4.19). That is,
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b�n = argmin
�n

T�1X
t= �T+1

(yt+1 � exp(Pn(ln(kt); ln(zt); �n)))
2 (4.20)

Note that the �rst �T observations are discarded. By doing this we can get
rid of any dependence on the initial values chosen for z1 and k1.3 For the
standard growth model, sensible choices for T and �T are 5,000 and 500.
One could stop here and simply let �i+1n = b�n. If it works then this is

great but with this choice the algorithm could very well diverge. That is,
the steps taken by the algorithm are too big. In general, one should use

�i+1n = �b�n + (1� �)�in with 0 < � � 1 (4.21)

For well behaved problems one can use values for � close to 1 and for
tougher problems one should use lower values.

Stopping rule

One can use the following stopping rule4

max(b�n(j)� �in(j)) < 0:0001: (4.22)

4.3 Non-Stochastic PEA

4.3.1 Key di¤erence with stochastic PEA

Both versions of PEA approximate the conditional expectation with a poly-
nomial. Nevertheless there is a key di¤erence. Stochastic PEA �nds the
coe¢ cients of the approximating polynomial using the following regression

yt+1 = exp(Pn(ln(kt); ln(zt); �n)) + eut+1; (4.23)

with the dependent variable de�ned as

yt+1 = �c
�

t+1

�
�zt+1k

��1
t+1 + 1� �

�
: (4.24)

This means that eut+1 contains (in addition to possible numerical errors)
true random (prediction) errors.

3Discarding a set of initial values is especially important if your choices for z1 and/or
k1 were not that sensible, but is a good practice in general.

4Determining the stopping rule is not trivial. In principle it would be better to have
a stopping rule on the function itself. If there is multicollinearity then coe¢ cients may
change quite a bit even though the function values do not. Also, if coe¢ cients are large
then using the percentage change may be better.
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Non-stochastic PEA di¤ers from stochastic PEA in two key aspects. The
�rst is that it replaces yt+1 in Equation 4.23 with an explicitly calculated
conditional expectation of yt+1. This would imply running the regression

Et [yt+1] = exp(Pn(ln(kt); ln(zt); �n)) + �ut+1; (4.25)

where �ut+1 now may still capture numerical errors but does not contain
random noise. Consequently, Equation 4.25 is a more e¢ cient system to
obtain estimates for �n. A second di¤erence is that non-stochastic PEA does
not use a simulated series to generate the observations for the regression.
Instead it constructs a grid. By controlling the location of the nodes used
to �nd �n one typically can gain e¢ ciency.
I will �rst describe the procedure when I use an arbitrary grid in the

untransformed state variables, ln(kt) and ln(zt). This will hopefully show
that non-stochastic PEA is not much more di¢ cult than stochsatic PEA.
Later I will show how the algorithm can be modi�ed to use Chebyshev
nodes and Chebyshev polynomials. This is only a minor (but very useful)
modi�cation but you may get lost in the notation if I immediately start
with it.

4.3.2 Preliminaries of the algorithm

Calculating the conditional expectation using numerical integration

The goal is to calculate

Et
�
�c�
t+1

�
�zt+1k

��1
t+1 + 1� �

��
given (i) values for kt and zt and (ii) a value for �n with which each en-
dogenous element in the conditional expectation can be calculated.
First, replace c�
t+1 by its approximation. This gives

Et

2664 �Pn

�
ln(kt+1);
ln(zt+1)

; �n

�
�
�
�

�
zt+1�
k��1t+1

�
+ 1� �

�
3775

Using that the value for kt+1 is given by

kt+1 = ztk
�
t + (1� �)kt � [exp(Pn(ln(kt); ln(zt); �n))]

�1=


we get

Et

26666666664

�Pn

0@ ln

�
ztk

�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


�
;

ln(zt+1)

; �n

1A

�

0BB@ �

0@ zt+1��
ztk

�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


���1 1A
+1� �

1CCA

37777777775
:
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Finally, we make explicit that the value over which we are integrating is
"t+1. Thus, we are trying to calculate

E

26666666664

�Pn

0@ ln

�
ztk

�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


�
;

ln(exp(� ln(zt) + "t+1))

; �n

1A

�

0BB@ �

0@ (exp(� ln(zt) + "t+1))��
ztk

�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


���1 1A
+1� �

1CCA

37777777775
:

But this is a standard numerical integration problem. Note that the shock,
"t+1, shows up in two places. It a¤ects next period�s productivity but it
also a¤ect consumption because zt+1 is a state variable. Since "t+1 has a
normal distribution, it is appropriate to use Gaussian Hermite quadrature.
Let f�h; !hgHh=1 be the set of Hermite nodes and weights. The conditional
expectation can then be calculated using

HX
h=1

2666666666664

�Pn

0@ ln

�
ztk

�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


�
;

ln(exp(� ln(zt) +
p
2��h))

; �n

1A�0BBB@ �

0B@ (exp(� ln(zt) +
p
2��h))��

ztk
�
t + (1� �)kt

� [exp(Pn(ln(kt); ln(zt); �n))]
�1=


���1 1CA
+1� �

1CCCA
� 1p

�
!h

3777777777775
:

Grid

Let fkj ; zjgJj=1 be the set of grid point for the two state variables, ln(k)
and ln(z). It may be a bit confusing that we now use a subscript, namely
j, to indicate the node and we use a subscript, namely t, to indicate the
time period. From the context it should be clear though whether we are on
a grid or in the time domain. Figuring out a sensible range for zt is easy.
The standard deviation of ln(zt), �z, is equal to

p
�2=(1� �2). A sensible

grid would locate points in the interval [exp(�3�z); exp(3�z)], although one
may want to start with a smaller range, say [exp(�2�z); exp(2�z)]. What a
sensible range is for capital is a bit more di¢ cult. I often found the interval
[0:8kss; 1:2kss] a good starting point. This range covers values from 20%
below to values 20% above the steady state capital stock. If your initial
value is bad and leads, for example, to negative capital stock choices, then
one may want to start again with a somewhat smaller range.5

5Note that consumption is positive by construction but if consumption exceeds total
resources then the budget constraint would imply a negative capital choice.
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4.3.3 Non-stochastic PEA as a projection method

A true rational expectations solution satis�es the Euler equations at all
points in the state space. The idea behind projection methods is to choose
the value of �n to get a good �t on the grid points. Consider a grid point
(kj ; zj). Using the formula for the conditional expectation derived above we
can check whether at this point the Euler equation holds for a particular
choice of �n. In particular, the Euler equation error at the j

th -node is
de�ned as

uj = +Pn(ln(kj); ln(zj); �n)

�
PH

h=1

2666666666664

�Pn

0@ ln

�
zjk

�
j + (1� �)kj

� [expPn(ln(kj); ln(zj); �n))]
�1=


�
;

ln(exp(� ln(zJ) +
p
2��h))

; �n

1A�0BBB@ �

0B@ (exp(� ln(zj) +
p
2��h))��

zjk
�
j + (1� �)kj

� [exp(Pn(ln(kj); ln(zj); �n))]
�1=


���1 1CA
+1� �

1CCCA
� 1p

�
!h

3777777777775
So the idea is to choose �n such that the error terms uj are close to zero.

If the number of elements of �n is equal to the number of grid point then
one can use an equation solver to �nd the value of �n that sets uj equal
to zero at all nodes. If one has more nodes then elements to solve for one
could �nd �n with the following minimization problem

��n = argmin
�n

JX
j=1

uj(�n)
2

This simply gives each grid point equal weight. The projection literature
has thought carefully on how to choose e¢ cient weigthing functions but I
found this unweighted procedure to often work well.

4.3.4 Iterative procedure for non-stochastic PEA

A simple way to �nd the solution ��n is to use the following iterative pro-
cedure. All aspects of the algorithm, such as construction of the grid and
choice of approximating function, are identical to those outlined above. The
only di¤erence is in how the value of ��n is found. Let �

1
n be the initial value

for the vector of coe¢ cients.

Step I: Calculate conditional expectation explicitly

In the ith -iteration the value of �in is given. In this step we want to calculate
at each node fkj ; zjg the conditional expectation explicitly when �in is
used. Denote the value calculated at the jth -node by yej . The superscript e
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indicates that this is an expectation in contrast to the realization yt+1 that
was used in stochastic PEA. Thus, we want to calculate

yej=
HX
h=1

266666666666664

�Pn

0B@ ln

 
zjk

�
j + (1� �)kj

�
�
expPn(ln(kj); ln(zj); �

i
n))
��1=
 ! ;

ln(exp(� ln(zJ) +
p
2��h))

; �in

1CA�
0BBB@ �

0B@ (exp(� ln(zj) +
p
2��h))� 

zjk
�
j + (1� �)kj

�
�
exp(Pn(ln(kj); ln(zj); �

i
n))
��1=
 !��1

1CA
+1� �

1CCCA
� 1p

�
!h

377777777777775
:

(4.26)
One could just blindly program this formula but it may be useful to un-
derstand the key steps you are taking at each node.

� Given values for kj and zj and using �in calculate cj from

cj =
�
Pn(ln(kj); ln(zj); �

i
n)
��1=


: (4.27)

Use this value of cj and the budget constraint to solve for k0j . The
value of cj is only used to calculate k0j and can now be discarded.

� Given the value of k0j calculate the conditional expectation. To cal-
culate the value of next period�s marginal utility one can use the
approximating function with �in as its coe¢ cients. In fact, given k

0
j

the expression for yej can be made a bit more transparent. Thus,

yej =
HX
h=1

26664
� exp

�
Pn

�
ln(k0j);

ln(exp(� ln(zJ) +
p
2��h))

; �in

��
�
 
�

 
(exp(� ln(zj) +

p
2��h))��

k0j
���1 !

+ 1� �
!

1p
�
!h

37775 :
(4.28)

Step II: Update coe¢ cients of approximating function

In the second step we get an updated value for �n by projecting the values
of yej on Pn. One possibility would be to use

b�n = argmin
�n

JX
j=1

�
yej � exp (Pn(ln(kj); ln(zj); �n))

�2
:

But recall that with non-stochastic PEA the di¤erence between yej is not a
stochastic error term. Consequently, we take transformations of both terms.
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That is, we can also use

b�n = argmin
�n

JX
j=1

�
ln(yej )� Pn(ln(kj); ln(zj); �n)

�2
; (4.29)

but this is equivalent to a linear regression. Note that we can use this
regression procedure when J is equal to the number of elements in �n or
when it is bigger. It is often better to slowly update the value of �n. Thus,

�i+1n = �b�n + (1� �)�in with 0 < � � 1: (4.30)

Discussion

One can think of the iterative procedure as a numerical algorithm to �nd
the value of �n that gives the best �t on the nodes. For many problems
it would be ine¢ cient numerical procedure. The reason is that it doesn�t
use any derivatives to �gure out what the best direction is to change �n.
Nevertheless, it may be useful because it is easy to program and because
you can control what values of �in the algorithm tries. The problem may
not be well de�ned for all possible choices of �in. For example, some choices
of �in, the capital choice may be negative. By choosing � e¤ectively one can
often avoid such problems. Equation solvers and minimization routines are
often black boxes and one cannot always easily control what values of �n
they are trying.

4.3.5 Non-stochastic PEA with Chebyshev grid & Chebyshev
polynomials

In the chapter on function approximation we learned two important things
that are relevant for the discussion here. First, by using Chehyshev nodes as
grid point we ensure uniform convergence. Second, higher-order approxima-
tions are sometimes di¢ cult to implement because of the multicollinearity
between the explanatory variables. Using Chebyshev polynomials are use-
ful for this problem because they ensure that evaluated at the nodes the
basis functions of Chebyshev polynomials are orthogonal to each other.
But Chebyshev nodes are in between -1 and 1. So to use Chebyshev

polynomials we have to do some scaling. Suppose we would like to have a
grid such that ln(kj) is in between kmin and kmax and ln(zj) is in between
zmin and zmax . We can then adopt the procedure above as follows.

� Generate Chebyshev nodes for the two state variables, �k and �z.

� The mapping between Chebyshev nodes and the actual values of the
state variables is given by

ln(kj) = a
k + bk�kj
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with

ak =
kmax + kmin

2
and bk =

kmax � kmin
2

and a similar equation to scale ln(zj). There are di¤erent ways to
proceed but the easiest may be to actually de�ne the grid using the
scaled up Chebyshev nodes. This way the value at a node is simply
the actual value of the state variable.

� To ensure that the discrete orthogonality property works, however,
one has to use the following modi�ed procedure to generate the
Chebyshev basis functions.

T c0 (ln kj) = 1

T c1 (ln kj) =
(ln kj � ak)

bk

T ci+1(ln kj) =
(ln kj � ak)

bk
T ci (ln kj)� T ci�1(ln kj)

This way of de�ning the Chebyshev basis function undoes the scal-
ing. Consequently, we have the discrete orthogonality property again.
That is, if X is the matrix with the regressors of the linear regression
associated with the problem in Equation 4.29, then X 0X is a diagonal
matrix which is always invertible even if the rows of X have many
higher-order polynomial terms.

4.4 Concluding comments

4.4.1 Rational expectations equilibrium

Suppose that the program converges. Let ��n stand for the value of �n in the
last iteration, that is, the one that satis�es the stopping rule. What can
we say about a solution that is based on Pn(ln(kt); ln(zt); ��n)? Suppose
we would simulate a time series based on this belief, that is, based on this
approximation of the conditional expectation. Suppose we would ask agents
whether� faced with this simulation� they would like to update the value
of �n. By construction the answer is no. That is, the series generated are
consistent with the beliefs on which they are based. This sounds a lot like
a true rational expectations equilibrium. But not completely! There are
two reasons. The �rst reason is that the simulation may be too short to
pin down the true value of ��n.

6 The second (and more important) reason

6This reason (and the next) also apply when we use the non-stochastic version of
PEA. That is, ��n may be the best value on the chosen grid, but this does not mean that
it would be best value if more grid points would be considered.
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it is not exactly like the de�nition of a rational expectations equilibrium
is that in the numerical procedure we restrict agents to use a particular
functional form to form beliefs. Suppose, we use a �rst-order approximation
and we have found a �xed point. Conditional on using a linear forecasting
rule agents are perfectly happy with the coe¢ cients of this rule. But that
doesn�t mean that they couldn�t do better with a higher-order polynomial.
For a true rational expectations solution, agents do not want to update the
coe¢ cients of the function they are using and they do not want to use any
alternative functional form.

4.4.2 Convergence to a rational expectations equilibrium?

In practice, we start with a �rst-order approximation and when we have
solved for a �rst-order solution, then we solve for a second-order approx-
imation. We continue until the properties of the policy functions, or the
properties we are interested in, do not change anymore. The big question is
whether we indeed converge towards the true rational expectations solution
if we follow this procedure. Weierstrass theorem seems promising but there
are two problems. First, Weierstrass theorem doesn�t give us a roadmap on
how to �nd the polynomial that is arbitrarily close. It just says there is one.
We already encountered this problem in the chapter on function approxi-
mation. If equidistant nodes are used then polynomials will not converge
when the sup norm is used, in fact they would diverge. To guarantee con-
vergence one had to use other nodes such as Chebyshev nodes. But the
problem here is a lot trickier. When we discussed function approximation
then the true function values at the nodes were given. That is not the case
here. That is, here we cannot evaluate the true values of g(kt; zt) at a set of
nodes (or time series observations). We have to use our approximation to
construct the values of what we are trying to approximate. Thus, if we go
from a �rst-order to a second-order approximation then the target changes
as well. That is, there is feedback from the approximation (i.e., the beliefs)
onto what is being approximated.
This doesn�t mean that it cannot be proven that convergence to the

rational expectation will take place. In fact, Marcet and Marshall (1994)
show exactly this for a certain class of functions. But it is a lot trickier
to prove than to invoke the standard convergence results from function
approximation.

4.4.3 Comparison of stochastic and non-stochastic PEA

There are two key di¤erences between stochastic and non-stochast PEA.
Those are the numerical integration procedure and the construction of the
grid. Let�s discuss those in turn.



xvi 4. Parameterized Expectations

Numerical integration procedure

Stochastic PEA (implicitly) uses pseudo Monte-Carlo integration7 to cal-
culate the conditional expectation. This is a really ine¢ cient integration
procedure and there is no good reason to use it. Above we saw that it is
very easy to explicitly calculate the conditional expectation. Note that this
can also be done on a simulated time path. Calculating the conditional ex-
pectation explicitly not only gets rid of the (slowly disappearing) sampling
noise, it also allows one to take a monotone transformation of the regressand
and approximating polynomial and change a non-linear projection problem
into a linear one. If the model has many stochastic shocks then at some
point Gaussian quadrature methods would become unfeasible because of
the curse of dimensionality. The most logical alternative would then be to
use quasi Monte-Carlo procedures. The terminology "quasi Monte-Carlo" is
somewhat misleading because the idea of these procedures is not to mimic
random numbers. The idea of these algorithms is to �ll high-dimensional
spaces in an e¢ cient way. These procedures resemble (pseudo) Monte Carlo
procedures in that they calculate the integral as a simple average of the
integrand at the generated observations.

Construction of the grid

The grid in stochastic PEA is constructed endogeneously. Especially if a
bad initial guess is used then the points used in the projection step may
be not at in the relevant range. Probably worse is that by using simulated
points we get points that are clustered around the mean, whereas preci-
sion increases by spreading out the nodes towards the boundary. This was
exactly the reason why Chebyshev nodes ensure uniform convergence and
equidistrant nodes do not. There is one case, however, where it could very
well be advantageous not to use spread out points in the projection step.
And that is when the approximating function is grossly misspeci�ed. For
example, suppose that the truth has substantial nonlinearities but that one
uses a linear approximation. Then clearly one will do poorly somewhere. By
using points close to the average one may do better where one would like
to do well namely where the economy spends most of the time. Personally
I do not �nd this argument too convincing for my own work because it is
rare in macroeconomics that functions cannot be approximated well with
relatively low-order polynomials.
There is one other reason why rectilinear grids may not work well. That is

when variables are not de�ned everywhere. For example, it is possible that
at some grid points the capital choice is negative using the true consumption
function. This can still be internally consistent if the economy never gets
to such a grid point. But especially on the transition path towards the

7Pseudo Monte-Carlo integration procedures are procedures that rely on a computer
algorithm to generate random numbers as opposed to true random numbers.
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�xed point, one may easily encounter problematic grid points. Working
with spheres instead of rectilinear grids may help but may not be enough
to avoid such problems. In my experience such points are characterized by
unlikely combinations of the state variables such as high capital stocks and
for example low productivity or (in matching models) low unemployment.
It is possible that the simulated data endogenously avoid such problematic
nodes.


