Perturbation and LQ

Wouter J. Den Haan London School of Economics

© 2011 by Wouter J. Den Haan

March 24, 2014

Neoclassical growth model - no uncertainty

$$\max_{\{c_{t},k_{t+1}\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} \frac{c_{t}^{1-\gamma} - 1}{1 - \gamma}$$
s.t.
$$c_{t} + k_{t+1} = k_{t}^{\alpha} + (1 - \delta)k_{t}$$

$$k_{1} \text{ is given}$$

$$c_{t}^{-\gamma} = \beta c_{t+1}^{-\gamma} \left[\alpha k_{t+1}^{\alpha - 1} + 1 - \delta \right]$$

Neoclassical growth model - no uncertainty

When we substitute out consumption using the budget constraint we get

$$(k_t^{\alpha} + (1 - \delta)k_t - k_{t+1})^{-\gamma} = \beta \left(k_{t+1}^{\alpha} + (1 - \delta)k_{t+1} - k_{t+2}\right)^{-\gamma} \left[\alpha k_{t+1}^{\alpha - 1} + 1 - \delta\right],$$

General specification I

$$f(x, x', y, y') = 0.$$

- $x: n_x \times 1$ vector of endogenous & exogenous state variables
- $y: n_y \times 1$ vector of endogenous choice variable

General specification II

Model:

$$f(x'', x', x) = 0$$

for a *known* function $f(\cdot)$.

Solution is of the form:

$$x' = h(x)$$

Thus,

$$F(x) \equiv f(h(h(x)), h(x), x) = 0 \quad \forall x$$

Neoclassical growth model again

$$f(k',k,c',c) =$$

$$\begin{bmatrix} -c^{-\gamma} + \beta (c')^{-\gamma} \left[\alpha (k')^{\alpha - 1} + 1 - \delta \right] \\ -c - k' + k^{\alpha} + (1 - \delta)k \end{bmatrix}$$

Solution is of the form:

$$k' = h(k)$$

$$c = g(k)$$

Thus,

No uncertainty

$$F(k) \equiv$$

$$\begin{bmatrix} -g(k)^{-\gamma} + \beta g(h(k))^{-\gamma} \left[\alpha h(k)^{\alpha - 1} + 1 - \delta \right] \\ -g(k) - h(k) + k^{\alpha} + (1 - \delta)k \end{bmatrix}$$

Neoclassical growth model again

$$f(k'',k',k) = \frac{(-k^{\alpha} - (1-\delta)k - k')^{-\gamma}}{\beta ((k')^{\alpha} + (1-\delta)k' - k'')^{-\gamma} [\alpha(k')^{\alpha-1} + 1 - \delta]},$$

for known values of α , δ , and γ

Solution is of the form: k' = h(k)Thus

$$F(k) \equiv (-k^{\alpha} - (1 - \delta)k - h(k))^{-\gamma} + \beta (h(k)^{\alpha} + (1 - \delta)h(k) - h(h(k)))^{-\gamma} \left[\alpha h(k)^{\alpha - 1} + 1 - \delta\right],$$

Key condition

$$F(k) = 0 \quad \forall x$$

Linear, Log-linear, t(x) linear, etc

- All first-order solutions are linear in something
- Specification in last slide
 - \Longrightarrow solution that is linear in the *level* of k

Linear, Log-linear, t(x) linear, etc

- How to get a solution that is linear in $\tilde{k} = \ln(k)$?
- ullet write the $f(\cdot)$ function as

$$(-\exp(\alpha \tilde{k}) - (1 - \delta) \exp(\tilde{k}) - \exp(\tilde{k}'))^{-\gamma} + f(\tilde{k}'', \tilde{k}', \tilde{k}) = \beta \left(\exp(\alpha \tilde{k}') + (1 - \delta) \exp(\tilde{k}') - \exp(\tilde{k}'')\right)^{-\gamma} \times [\alpha \exp((\alpha - 1)\tilde{k}') + 1 - \delta]$$

Linear, Log-linear, t(x) linear, etc

- How wo get a solution that is linear in $\hat{k} = t(k)$?
- Write the $f(\cdot)$ function as

$$f(\hat{k}'', \hat{k}', \hat{k}) = (-\left(t_{inv}(\hat{k})\right)^{\alpha} - (1 - \delta)\left(t_{inv}(\hat{k})\right) - \left(t_{inv}(\hat{k}')\right))^{-\gamma} + \beta\left(\left(t_{inv}(\hat{k}')\right)^{\alpha} + (1 - \delta)\left(t_{inv}(\hat{k}')\right) - \left(t_{inv}(\hat{k}'')\right)\right)^{-\gamma} \times \left[\alpha\left(t_{inv}(\hat{k}')\right)^{\alpha - 1} + 1 - \delta\right]$$

Numerical solution

Let

$$\overline{x}$$
 solve $f(\overline{x}, \overline{x}, \overline{x}) = 0$

That is

$$\overline{x} = h(\overline{x})$$

Taylor expansion

$$h(x) \approx h(\overline{x}) + (x - \overline{x})h'(\overline{x}) + \frac{(x - \overline{x})^2}{2}h''(\overline{x}) + \cdots$$
$$= \overline{x} + \overline{h}_1(x - \overline{x}) + \overline{h}_2\frac{(x - \overline{x})^2}{2} + \cdots$$

• Goal is to find \bar{x} , \bar{h}_1 , \bar{h}_2 , etc.

Solving for first-order term

$$F(x) = 0 \quad \forall x$$

Implies

$$F'(x) = 0 \quad \forall x$$

Definitions

Let

$$\frac{\partial f(x'', x', x)}{\partial x''}\Big|_{x''=x'=x=\overline{x}} = \overline{f}_{1},$$

$$\frac{\partial f(x'', x', x)}{\partial x'}\Big|_{x''=x'=x=\overline{x}} = \overline{f}_{2},$$

$$\frac{\partial f(x'', x', x)}{\partial x}\Big|_{x''=x'=x=\overline{x}} = \overline{f}_{3}.$$

Note that

$$\left. \frac{\partial h(x)}{\partial x} \right|_{x=\overline{x}} = \left. \left(\overline{h}_1 + \overline{h}_2(x-\overline{x}) + \cdots \right) \right|_{x=\overline{x}} = \overline{h}_1$$

Key equation

$$F'(x) = 0 \quad \forall x$$

or

$$F'(x) = \frac{\partial f}{\partial x''} \frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial f}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial f}{\partial x} = 0$$

can be written as

$$F'(\bar{x}) = \bar{f}_1 \bar{h}_1^2 + \bar{f}_2 \bar{h}_1 + \bar{f}_3 = 0$$

• One equation to solve for \overline{h}_1

Key equation

$$F'(x) = 0 \quad \forall x$$

or

$$F'(x) = \frac{\partial f}{\partial x''} \frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial f}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial f}{\partial x} = 0$$

can be written as

$$F'(\bar{x}) = \bar{f}_1 \bar{h}_1^2 + \bar{f}_2 \bar{h}_1 + \bar{f}_3 = 0$$

- ullet One equation to solve for \overline{h}_1
- Hopefully, the Blanchard-Kahn conditions are satisfied and there is only one sensible solution

Solving for second-order term

$$F'(x) = 0 \quad \forall x$$

Implies

$$F''(x) = 0 \quad \forall x$$

Definitions

Let

$$\left. \frac{\partial^2 f(x'', x', x)}{\partial x'' \partial x} \right|_{x'' = x' = x = \overline{x}} = \overline{f}_{13}. \tag{1}$$

and note that

$$\left. \frac{\partial^2 h(x)}{\partial x^2} \right|_{x=\overline{x}} = \left(\overline{h}_2 + \overline{h}_3(x-\overline{x}) + \cdots \right) \Big|_{x=\overline{x}} = \overline{h}_2. \tag{2}$$

Key equation

$$F''(x) = 0 \quad \forall x$$

or

$$F''(x) =$$

$$+ \left(\frac{\partial^{2} f}{\partial x''^{2}} \frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial^{2} f}{\partial x'' \partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial^{2} f}{\partial x'' \partial x} \right) \left(\frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x} \right)$$

$$+ \frac{\partial f}{\partial x''} \left(\frac{\partial h(x')}{\partial x'} \frac{\partial^{2} h(x)}{\partial x^{2}} + \frac{\partial^{2} h(x')}{\partial x'^{2}} \frac{\partial h(x)}{\partial x} \frac{\partial h(x)}{\partial x} \right)$$

$$+ \left(\frac{\partial^{2} f}{\partial x' x''} \frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial^{2} f}{\partial x'^{2}} \frac{\partial h(x)}{\partial x} + \frac{\partial^{2} f}{\partial x'^{2}} \frac{\partial h(x)}{\partial x} \right) \frac{\partial h(x)}{\partial x}$$

$$+ \frac{\partial f}{\partial x'} \frac{\partial^{2} h(x)}{\partial x'}$$

$$+ \left(\frac{\partial^{2} f}{\partial x x''} \frac{\partial h(x')}{\partial x'} \frac{\partial h(x)}{\partial x'} + \frac{\partial^{2} f}{\partial x \partial x'} \frac{\partial h(x)}{\partial x} + \frac{\partial^{2} f}{\partial x^{2}} \right)$$

Key equation

Which can be written as

$$F''(\bar{x}) = \left(\bar{f}_{11}\bar{h}_{1}^{2} + \bar{f}_{12}\bar{h}_{1} + \bar{f}_{13}\right)\bar{h}_{1}^{2} + \bar{f}_{1}(\bar{h}_{1}\bar{h}_{2} + \bar{h}_{2}\bar{h}_{1}^{2}) + \left(\bar{f}_{21}\bar{h}_{1}^{2} + \bar{f}_{22}\bar{h}_{1} + \bar{f}_{23}\right)\bar{h}_{1} + \bar{f}_{2}\bar{h}_{2} + \left(\bar{f}_{31}\bar{h}_{1}^{2} + \bar{f}_{32}\bar{h}_{1} + \bar{f}_{33}\right) = 0$$

ullet One *linear* equation to solve for \overline{h}_2

Discussion

- Global or local?
- Borrowing constraints?
- Quadratic/cubic adjustment costs?

Neoclassical growth model with uncertainty

$$\max_{\{c_t, k_{t+1}\}_{t=1}^{\infty}} \mathsf{E}_1 \sum_{t=1}^{\infty} \beta^{t-1} \frac{c_t^{1-\gamma} - 1}{1 - \gamma}$$
 s.t.

$$c_t + k_{t+1} = \exp(\theta_t)k_t^{\alpha} + (1 - \delta)k_t \tag{3}$$

$$\theta_t = \rho \theta_{t-1} + \sigma e_t, \tag{4}$$

General specification

$$\mathsf{E} f(x,x',y,y')=0.$$

- $x:n_x imes 1$ vector of endogenous & exogenous state variables
- $y: n_y \times 1$ vector of endogenous choice variable
- Stochastic growth model: y = c and $x = [k, \theta]$.

Essential insight #1

• Make uncertainty (captured by *one* parameter) explicit in system of equation

$$\mathsf{E} f(x,x',y,y',\sigma)=0.$$

Solutions are of the form:

$$y = g(x, \sigma)$$

and

$$x' = h(x, \sigma) + \sigma \eta \varepsilon'$$

Neoclassical Growth Model

• For standard growth model we get

$$\mathsf{E} f([k,\theta],[k',\rho\theta+\sigma\varepsilon'],y,y')=0$$

Solutions are of the form:

$$c = c(k, \theta, \sigma) \tag{5}$$

and

$$\begin{bmatrix} k' \\ \theta' \end{bmatrix} = \begin{bmatrix} k'(k, \theta, \sigma) \\ \rho \theta \end{bmatrix} + \sigma \begin{bmatrix} 0 \\ 1 \end{bmatrix} e'. \tag{6}$$

Essential insight #2

Perturb around y, x, and σ .

$$g(x,\sigma)=g(\overline{x},0)+g_x(\overline{x},0)(x-\overline{x})+g_\sigma(\overline{x},0)\sigma+\cdots$$

and

$$h(x,\sigma)=h(\overline{x},0)+h_x(\overline{x},0)(x-\overline{x})+h_\sigma(\overline{x},0)\sigma+\cdots$$

Goal

Let

$$\overline{g}_x = g_x(\overline{x}, 0), \ \overline{g}_\sigma = g_\sigma(\overline{x}, 0) \text{ and}$$
 $\overline{h}_x = h_x(\overline{x}, 0), \ \overline{h}_\sigma = h_\sigma(\overline{x}, 0).$

Goal: to find

- $(n_y \times n_x)$ matrix \overline{g}_x , $(n_y \times 1)$ vector \overline{g}_σ , $(n_x \times n_x)$ matrix \overline{h}_x , $(n_x \times 1)$ vector \overline{h}_σ .
- The total of unknowns = $(n_x + n_y) \times (n_x + 1) = n \times (n_x + 1)$.

More on uncertainty

Results for first-order perturbation

•
$$\overline{g}_{\sigma} = \overline{h}_{\sigma} = 0$$

Results for second-order perturbation

$$ullet$$
 $\overline{g}_{\sigma x}=\overline{h}_{\sigma x}=0$, but $\overline{g}_{\sigma \sigma}
eq 0$ and $\overline{h}_{\sigma \sigma}
eq 0$

How to model discrete support?

Theory

- Theory says nothing about convergence patterns
- Theory doesn't say whether second-order is better than first
- For complex functions, this is what you have to worry about

Example with simple Taylor expansion

Truth:

$$f(x) = -690.59 + 3202.4x - 5739.45x^{2} +4954.2x^{3} - 2053.6x^{4} + 327.10x^{5}$$

defined on [0.7, 2]

No uncertainty With uncertainty Global method Linear-Quadratic

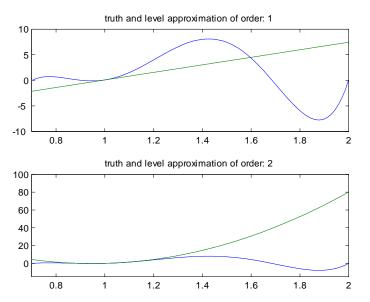


Figure: Level approximations

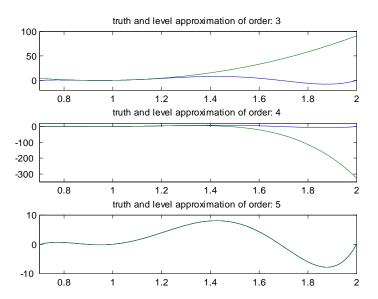


Figure: Level approximations continued

Approximation in log levels

Think of f(x) as a function of $z = \log(x)$. Thus,

$$f(x) = -690.59 + 3202.4 \exp(z) - 5739.45 \exp(2z) +4954.2 \exp(3z) - 2053.6 \exp(4z) + 327.10 \exp(5z).$$

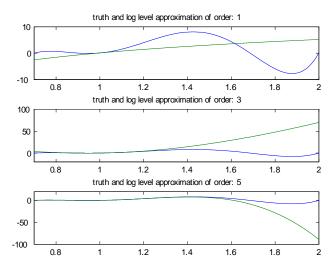


Figure: Log level approximations

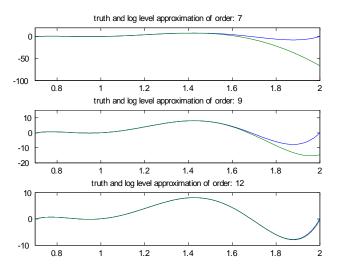
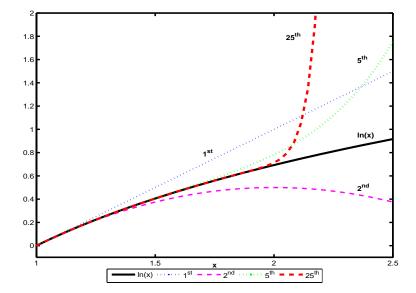


Figure: Log level approximations continued

ln(x) & Taylor series expansions at x = 1



Are LQ & first-order perturbation the same?

True model:

$$\max_{x,y} f(x,y,a)$$

s.t. $g(x,y,a) \le b$

First-order conditions

$$f_x(x,y,a) + \lambda g_x(x,y,a) = 0$$

$$f_y(x,y,a) + \lambda g_y(x,y,a) = 0$$

$$g(x,y,a) = b$$

- First-order perturbation of this system will involve second-order derivatives of $g(\cdot)$
- LQ solution will not

Benigno and Woodford LQ approach

Basic Idea: Add second-order approximation to objective function Naive LQ approximation:

$$\max_{x,y} \min_{\lambda} + \frac{1}{2} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{bmatrix}' \begin{bmatrix} \overline{f}_{xx} & \overline{f}_{xy} & \overline{f}_{xa} \\ \overline{f}_{yx} & \overline{f}_{yy} & \overline{f}_{ya} \\ \overline{f}_{ax} & \overline{f}_{ay} & \overline{f}_{aa} \end{bmatrix} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{bmatrix} \\
+ \lambda \begin{bmatrix} -\overline{g}_{x}\widetilde{x} - \overline{g}_{y}\widetilde{y} - \overline{g}_{a}\widetilde{a} \end{bmatrix} (7)$$

Benigno and Woodford LQ approach

Step I: Take second-order approximation of constraint.

$$0 \approx \frac{1}{2} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{bmatrix}' \begin{bmatrix} \overline{g}_{xx} & \overline{g}_{xy} & \overline{g}_{xa} \\ \overline{g}_{yx} & \overline{g}_{yy} & \overline{g}_{ya} \\ \overline{g}_{xx} & \overline{g}_{xy} & \overline{g}_{xa} \end{bmatrix} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{bmatrix}$$
(8)

Benigno and Woodford LQ approach

Step 2:Multiply by steady state value of λ and add to "naive" LQ formulation:

$$\begin{aligned} \max_{x,y} \min_{\lambda} \frac{1}{2} \left[\begin{array}{c} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{array} \right]' \left[\begin{array}{c} \overline{f}_{xx} - \overline{\lambda} \overline{g}_{xx} & \overline{f}_{xy} - \overline{\lambda} \overline{g}_{xy} & \overline{f}_{xa} - \overline{\lambda} \overline{g}_{xy} \\ \overline{f}_{yx} - \overline{\lambda} \overline{g}_{yx} & \overline{f}_{yy} - \overline{\lambda} \overline{g}_{yy} & \overline{f}_{ya} - \overline{\lambda} \overline{g}_{ya} \\ \overline{f}_{ax} - \overline{\lambda} \overline{g}_{ax} & \overline{f}_{ay} - \overline{\lambda} \overline{g}_{ay} & \overline{f}_{aa} - \overline{\lambda} \overline{g}_{aa} \end{array} \right] \left[\begin{array}{c} \widetilde{x} \\ \widetilde{y} \\ \widetilde{a} \end{array} \right] \\ + \lambda \left[b - \overline{g} - \overline{g}_{x} \widetilde{x} - \overline{g}_{y} \widetilde{y} - \overline{g}_{a} \widetilde{a} \right] \end{aligned}$$