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3.1 Introduction

In this set of notes we show how perturbation techniques can be used to
obtain first and higher-order Taylor expansions of the true rational expecta-
tions policy function around the steady state. We also discuss the paper of
Schmitt-Grohé and Uribe (2004) that makes clear in which way uncertainty
affects the policy rules obtained with pertubation solutions.
We also make clear what the difference is between the first-order ap-

proximation obtained with the perturbation procedure and the first-order
approximation obtained with what Benigno and Woodford (2006) refer to
as the naive LQ procedure. This is the linear solution one obtains using
a quadratic approximation of the objective function and a linear approxi-
mation of the constraints. This LQ procedure does not generate in general
the first-order Taylor expansion of the true rational expectations solution.
The reason is that the constraints are only approximated with first-order
approximations. The rational expectations solution is itself based on first-
order conditions and so the correct first-order Taylor expansion of the true
policy rule includes second-order aspects of the objective function as well
as the constraints. Moreover, one cannot use a second-order approximation
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of the constraints because the solution would be no longer linear and the
whole convenience of the LQ framework disappears.1

This result implies that it is better to get rid of the constraints by sub-
stituting out variables. This is not always possible. Benigno and Woodford
(2006) show that one can incorporate second-order properties of the con-
straints into the Lagrangian and still have a standard LQ problem. Using
a simple example, we show why this procedure also results in a first-order
Taylor expansion of the true solution.
There are no new results in this note. Also, in stead of giving proofs

for general formulation we document properties using simple examples.
Hopefully this will make the ideas easier to understand. Also, these notes
are new and the expressions get a bit tedious so be aware of typos and if
you find them please let me know.

3.2 Case without uncertainty

Consider the standard growth model.

max
{ct,kt+1}∞t=1

∞X
t=1

βt−1
c1−γt − 1
1− γ

s.t. ct + kt+1 = kαt + (1− δ)kt

k1 is given.

The Euler equation is given by

c−γt = βc−γt+1
£
αkα−1t+1 + 1− δ

¤
. (3.1)

When we substitute out consumption using the budget constraint we get

(kαt + (1− δ)kt − kt+1)
−γ
=

β
¡
kαt+1 + (1− δ)kt+1 − kt+2

¢−γ £
αkα−1t+1 + 1− δ

¤
,

(3.2)

that is, a second-order difference equation in kt. We are looking for a re-
cursive solution of the form

kt+1 = h(kt). (3.3)

More generally, we are looking for a solution to equations like

f(x00, x0, x) = 0 (3.4)

1 If there are second-order terms in the constraint then the Lagrangian would contain
third-order terms, namely the Lagrange multiplier times these second-order terms.
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of the form
x0 = h(x). (3.5)

To simplify the notation we let (for now) x be a scalar. Define F (x) as

F (x) ≡ f(h(h(x)), h(x), x). (3.6)

Since h(x) is a solution to Equation (3.4), we know that

F (x) = 0. (3.7)

Let x be the fixed-point of h(x). Thus,

x = h(x). (3.8)

The Taylor expansion of the solution, h(x), around x is given by

h(x) ≈ h(x) + (x− x)h0(x) +
(x− x)2

2
h00(x) + · · · (3.9)

= x+ h1(x− x) + h2
(x− x)2

2
+ · · · (3.10)

So the goal is to find x, h1, h2, etc..
Clearly, x has to satisfy

f(x, x, x) = 0. (3.11)

Finding x can be a non-trivial problem if f is a nasty non-linear function,
but a good equation solver combined with some decent initial conditions
should do the trick. The key insight of the perturbation procedure is to
solve for the coefficients hi not simultaneously but sequentially. So let’s
start.

3.2.1 Finding the coefficient for the linear term, h1
For what follows below, it is important to understand that the functional
form of f and numerical values of parameter values that appear in f are
known. Since

F (x) = 0 ∀x (3.12)

we know that
F 0(x) = 0 ∀x. (3.13)

The derivative of F is given by

F 0(x) =
∂f

∂x00
∂h(x0)

∂x0
∂h(x)

∂x
+

∂f

∂x0
∂h(x)

∂x
+

∂f

∂x
. (3.14)
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Let

∂f(x00, x0, x)

∂x00

¯̄̄̄
x00=x0=x=x

= f1, (3.15)

∂f(x00, x0, x)

∂x0

¯̄̄̄
x00=x0=x=x

= f2, (3.16)

∂f(x00, x0, x)

∂x

¯̄̄̄
x00=x0=x=x

= f3. (3.17)

Also, note that

∂h(x)

∂x

¯̄̄̄
x=x

=
¡
h1 + h2(x− x) + · · ·

¢¯̄
x=x

= h1 (3.18)

Using this in Equation (3.14) we get

F 0(x) = f1h
2

1 + f2h1 + f3 = 0 (3.19)

Note that there are no approximations in obtaining this equation. That
is, the first-order term of the Taylor expansion of the true policy function
is exactly pinned down by this equation. Solving this quadratic equation
for h1 corresponds to the standard problem of obtaining a solution from
the linearized first-order conditions. See, for example, the notes of Harald
Uhlig for a discussion. The concavity of the utility and the production
function implies that one solution corresponds to an explosive time path
and that the other root corresponds to the unique non-explosive solution
of the system.

3.2.2 Finding the coefficient for the second-order term, h2
Given the solution for h1 it is actually relatively simple to get the second-
order term. Let’s calculate F 00(x) by differentiating the expresssion for
F 0(x) in Equation (3.14).

F 00(x) =

+

µ
∂2f

∂x002
∂h(x0)

∂x0
∂h(x)

∂x
+

∂2f

∂x00∂x0
∂h(x)

∂x
+

∂2f

∂x00∂x

¶µ
∂h(x0)

∂x0
∂h(x)

∂x

¶
+

∂f

∂x00

µ
∂h(x0)

∂x0
∂2h(x)

∂x2
+

∂2h(x0)

∂x02
∂h(x)

∂x

∂h(x)

∂x

¶
+

µ
∂2f

∂x0x00
∂h(x0)

∂x0
∂h(x)

∂x
+

∂2f

∂x02
∂h(x)

∂x
+

∂2f

∂x0∂x

¶
∂h(x)

∂x

+
∂f

∂x0
∂2h(x)

∂x2

+

µ
∂2f

∂xx00
∂h(x0)

∂x0
∂h(x)

∂x
+

∂2f

∂x∂x0
∂h(x)

∂x
+

∂2f

∂x2

¶
(3.20)
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Now you may think this is a nightmare, but it actually isn’t. First, we
use subscripts to indicate second-order derivatives evaluated at the steady
state. For example,

∂2f(x00, x0, x)

∂x00∂x

¯̄̄̄
x00=x0=x=x

= f13. (3.21)

Also,
∂2h(x)

∂x2

¯̄̄̄
x=x

=
¡
h2 + h3(x− x) + · · ·

¢¯̄
x=x

= h2. (3.22)

Combining this gives

F 00(x) = 0

=
³
f11h

2

1 + f12h1 + f13

´
h
2

1

+f1(h1h2 + h2h
2

1)

+
³
f21h

2

1 + f22h1 + f23

´
h1

+f2h2

+
³
f31h

2

1 + f32h1 + f33

´
(3.23)

This equation is linear in the only unknown, h2, so this is an easy equa-
tion to solve. Obtaining higher-order terms can be done by repeating this
procedure. And all higher-order terms can be solved from a linear system.

3.3 Is it just a local procedure?

To better understand the formal ideas behind perturbation techniques you
should check Judd (1998). But the basic idea is the implicit-function the-
orem. That is,

1. if H(x, y) : Rn ×Rm −→ Rm,

2. Hy(x, y) is not singular,

3. H(x, y) = 0, and

4. you can differentiate this function sufficiently often,

5. then there exists a unique function y = h(x) such that H(x, h(x)) = 0
and the derivatives of h can be obtained by implicit differentiation.

You may think that perturbation procedures can only provide local ap-
proximations and that these techniques are not very good in evaluating
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the policy functions at values of the state variables that are not close to
the steady state. That was my feeling when I started thinking about per-
turbation techniques. It is important to realize though that for a smooth
and sufficiently differentiable function d(z), one can approximate d(z∗) well
using a Taylor expansion around z even though one only uses information
about d at a point that is far away from z∗, namely z. The reason is that
for a regular function the functional form of d at z∗ is also present in the
derivatives of d at z. For example, suppose that d(z) is a 10th-order poly-
nomial. The value of d at z together with the 10 derivatives at z completely
pin down the function. The 10th-order Taylor expansion, thus, would give
a perfect approximation for any value z no matter how far away from z.
The story, of course, breaks down if there are non-differentiabilities. Also,
in practice the question is whether low -order perturbation methods are
accurate and how they compare with low-order approximations obtained
from global numerical solution procedures. For example, suppose that the
true policy rule is given by d(z) = z10 and z = 0 then anything below a
10th-order perturbation would result in a flat policy function, whereas the
truth is not flat.
The following numerical example, documents this. It also points out,

however, that convergence towards the truth as the order of the polynomial
increases can display very strange patterns. The function considered is a
5th-order polynomial equal to

f(x) = −690.59 + 3202.4x− 5739.45x2

+4954.2x3 − 2053.6x4 + 327.10x5

defined on the interval [0.7, 2]. The five panels of Figure 1 plot the the true
function and the Taylor approximations around x = 1 from the first—order
to the fifth-order. This function shows show wild osciallations, but the fifth-
order Taylor expansion is identical to the truth. Interestingly, of the other
approximations the first-order is the best and the fourth-order is the worst.
Note that the scale of the vertical axis is very different in each of the five
panels.
This raises the question, what convergence would look like if one would

use a different type of polynomial. For example, suppose we think of f(x)
as a function of z = log(x). Thus,

f(x) = −690.59 + 3202.4 exp(z)− 5739.45 exp(2z)
+4954.2 exp(3z)− 2053.6 exp(4z) + 327.10 exp(5z).

The six panels of Figure 2 plot the Taylor expansions around z = 0 of order
1, 3, 5, 7, 9, and 12. Again convergence displays an odd pattern with the
approximation actually first getting worse if one goes beyond first-order
and only around the 9th-order approximation does the approximation start
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to resemble the truth and converges monotonically towards it. But note
that even for the 7th-order approximation the deviation from the truth is
huge (note the difference in the scale).

3.4 The case with uncertainty

Consider the standard growth model with uncertainty:

max
{ct,kt+1}∞t=1

E1
∞X
t=1

βt−1
c1−γt − 1
1− γ

s.t. ct + kt+1 = exp(θt)k
α
t + (1− δ)kt (3.24)

where θt is a stochastic productivity shock and the initial capital stock k1
is given. A typical law of motion for θt is given by

θt = ρθt−1 + σet, (3.25)

where σ controls the amount of uncertainty.
The Euler equation is given by

c−γt = βEt
£
c−γt+1

¡
α exp(θt)k

α−1
t+1 + 1− δ

¢¤
. (3.26)

Equations (3.24), (3.25), and (3.26) give a system of three equations that
determine the law of motion for consumption, productivity, and capital.
Such a system can be written as

Ef(x, x0, y, y0) = 0. (3.27)

Here x is an (nx × 1) vector of endogenous and exogenous state variables
and y is an (ny × 1) vector endogenous choice variable. When applied to
the stochastic growth model, we would have that y = c and x = [k, θ].

Essential ingredients

When solving the model with perturbation techniques, we write the prob-
lem such that the amount of uncertainty is controlled by one scalar pa-
rameter σ. Even if there are multiple stochastic driving processes one can
still use one parameter to scale the amount of uncertainty. If σ = 0 then
there is no uncertainty. Again, the goal is to find the policy functions. To
apply the perturbation technique under uncertainty we follow the following
two key steps.
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First key step: solution as a function of σ

The first step is to make explicit that σ enters the system of equations and
that the policy functions, thus, depends on the amount of uncertainty. For
the standard growth model we have

Ef([k, θ], [k0, ρθ + σε0], y, y0) = 0. (3.28)

We are trying to solve for functions of the form

y = g(x, σ) (3.29)

and
x0 = h(x, σ) + σηε0, (3.30)

where ε0 is an (nε × 1) vector and η is an (nx × nε) matrix. The policy
functions depend, of course, on all the structural parameter values, not
just σ. But you will see below why we make explicit that it depends on
the amount of uncertainty. For example, for the standard growth model
presented above, these equations would be

c = c(k, θ, σ) (3.31)

and ∙
k0

θ0

¸
=

∙
k0(k, θ, σ)

ρθ

¸
+ σ

∙
0
1

¸
e0. (3.32)

Second key step: perturb around y and x and σ = 0

The second key step of the perturbation procedure is to take a Taylor
expansion of the true solution to the system around the steady state values
of the variables and around σ = 0. That is, one starts at the steady state
but then allows uncertainty to increase.
A disadvantage of perturbation techniques is that the notation is a bit

tedious. Below, I will show you the notation that the literature has used
and show how to do perturbation under uncertainty. Don’t worry if you
get lost in the notation. Below, I will go back to the case of the standard
growth model and redo the analysis.
Let x = h(x, σ) and y = g(x, σ). Thus,

f(x, x, y, y) = 0 (3.33)

Define

F (x, σ) =

Et f [x, x0, y, y0] = 0

Et f [x, h(x, σ) + σηε0, g(x, σ), g(x0, σ)] = 0

Et f [x, h(x, σ) + σηε0, g(x, σ),g(h(x, σ) + σηε0, σ)] = 0 (3.34)
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This is a system of n(= nx+ny) in n unknowns. Since we are also perturbing
σ (around 0), the Taylor expansions of the true policy functions are given
by

g(x, σ) = g(x, 0) + gx(x, 0)(x− x) + gσ(x, 0)σ + · · · (3.35)

and
h(x, σ) = h(x, 0) + hx(x, 0)(x− x) + hσ(x, 0)σ + · · · (3.36)

Let
gx = gx(x, 0), gσ = gσ(x, 0) and (3.37)

hx = hx(x, 0), hσ = hσ(x, 0). (3.38)

The goal is to find the (ny × nx) matrix gx, the (ny × 1) vector gσ, the
(nx×nx) matrix hx, and the (nx× 1) vector hσ. The total of unknowns is,
thus,

(nx + ny)× (nx + 1) = n× (nx + 1).

We solve for these unknowns by imposing

Fx(x, 0) = 0, (3.39)

which gives us n× nx equations and

Fσ(x, 0) = 0. (3.40)

which gives us n equations.
To help with the exposition we introduce some notation. In particular,

we denote the derivative of the i-th element of f with respect to the k-th
element of z, for z ∈ {x, y}, with

∂f i

∂zk
= [fz]

i
k. (3.41)

To understand the notation consider functions v = v(x) and w = w(x),
which map Rn1 into Rn1 and a function D(v, w) which maps R2∗n1 into
Rn2 . Now consider the function D(v(x), w(x)). The derivative of the i-th
element of D with respect to the j-th element of x is equal to

∂Di(v(x), w(x))

∂xj
=

n1X
kv=1

∂f i

∂vkv
∂vkv

∂xj
+

n1X
kw=1

∂f i

∂wkw

∂wkw

∂xj
. (3.42)

We will denote this by

∂Di(v(x), w(x))

∂xj
= [fv]

i
kv
[vx]

kv
j + [fw]

i
kw
[wx]

kw
j . (3.43)

That is, the index k showing up as a subscript and a superscript in adjacent
terms indicates the summation. Moreover, the subscript of k indicates over
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how many elements the summation is. That is, kv implies summing from
kv = 1 up to the number of elements of v.
We can use the same convenient notation if there are no derivatives

involved. If η is an (nx × nε) matrix and ε is an (nε × 1) vector then
nεX

kε=1

η_i,kε_k = [η]
i
kε
[ε0]

kε , (3.44)

where η_i,k is the (i, k) element of η and ε_k the k-th element of ε.
Using this notation to calculate the n×nx derivatives of F with respect

to x, we get

[Fx(x, 0)]
i
j =

£
fx
¤i
j
+£

fx0
¤i
kh

£
hx
¤kh
j
+£

fy
¤i
kg
[gx]

kg
j +£

fy0
¤i
kg
[gx]

kg
kh

£
hx
¤kh
j

= 0. (3.45)

An upper bar over the function f indicates that the function is evaluated
at the steady state values of x and y and at σ = 0.2 Note that the hx and
gx terms are multiplied. This is, thus, a second-order system of equations
in the nx × nx values of hx and the ny × nx values of gx. Although the
notation is new, this part of the perturbation routine is identical to what has
been done for many years by linearizing the first-order conditions. But the
perturbation procedure adds the hσ and gσ coefficients. Those are solved
from

[Fσ(x, 0)]
i
j =

Et
n£
fx0
¤i
kh

£
hσ
¤kh

+
£
fx0
¤i
kh
[η]khkε [ε

0]kε
o
+

Et
n£
fy
¤i
kg
[gσ]

kg
o
+

Et
n£
fy0
¤i
kg
[gx]

kg
kh

£
hσ
¤kh

+
£
fy0
¤i
kg
[gx]

kg
kh
[η]khkε [ε

0]kε
o

Et
n£
fy0
¤i
kg
[gσ]

kg
o = 0.

(3.46)
This gives us n equations to solve for gσ and hσ. Below we will show that
these coefficients are zero so that first-order perturbation will imply the
same answer as "old-fashioned" linearization of the first-order conditions.

3.5 How does uncertainty matter?

The two important contributions of the perturbation procedure are that
it allows for higher-order approximation and that it is explicit about the

2 In other papers in the literature it is implicit that the function is evaluated at the
steady state values and the upper bar is not used.
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role of uncertainty. The question arises how important uncertainty is and
whether it matters in lower-order approximations. Below we will discuss the
very important results from Schmitt-Grohé and Uribe (2004). These results
are actually quite straightforward to derive using the notation developed
above, but the notation also hides a bit what is actually going on. So let’s
go back to the standard growth model and work out the equations in this
simpler setup. In the standard growth model we would have

F (x, σ) = Etf(k, θ, k0, θ
0, c, c0)

= Etf

⎛⎜⎜⎜⎜⎜⎜⎝
k,
θ

h(k, θ, σ),
ρθ + σε0,
g(k, θ, σ),

g(h(k, θ, σ), ρθ + σε0, σ)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where f represents the budget constraint, the Euler equation, and the law
of motion for θ. It thus maps R6 into a (3× 1) vector.

3.5.1 Uncertainty and first-order perturbation

To obtain the coefficients gσ and hσ (which are scalars in this case) we use

Fσ(x, 0) = 0. (3.47)

Fσ(x, 0) = Et

⎛⎜⎜⎜⎜⎝
fk0(s)hσ(k, θ, σ)+

fθ0(s)ε
0+

fc(s)gσ(k, θ, σ)+

fc0(s)

µ
gk(k

0, θ0, σ)hσ(k, θ, σ)+
gθ(k

0, θ0, σ)ε0 + gσ(k
0, θ0, σ)

¶
⎞⎟⎟⎟⎟⎠ (3.48)

Here s denotes the arguments of f , that is, s = [k, θ, k0, θ0, c, c0]. Evaluating
this expression at x = 0 and calculating the expectation gives

Fσ(x, 0) =
¡
fk0 + fc0gk

¢
hσ +

¡
fc + fc0

¢
gσ = 0 (3.49)

Note that this system gives us three equations, since f consists of three
elements, in the two unknowns gσ and hσ. But note that the equation
corresponding to the law of motion of productivity gives 0 = 0 so we
are left with two equations in two unknowns.3 In particular, if we let fbc

3Note that ḡk is known. It is solved from Fx(x̄, 0) = 0.



xii 3. Perturbation techniques

denote the element of f corresponding to the budget constraint and feu

the element of f corresponding the Euler equation we get

"
f
bc

k0 + f
bc

c0 gk f
bc

c + f
bc

c0

f
eu

k0 + f
eu

c0 gk f
eu

c + f
eu

c0

# ∙
hσ
gσ

¸
= 0 (3.50)

So

gσ = hσ = 0 (3.51)

and if there is no singularity in the system then this would be the unique
solution. This, of course, corresponds to the certainty equivalence that one
also obtains if linear policy rules are obtained by using the LQ procedure.
Although we only show this result in a simple model, Schmitt-Grohé and
Uribe (2004) prove that this result holds in more general frameworks.

3.5.2 Uncertainty and second-order perturbation

The second-order Taylor expansions of the policy functions are

h(k, θ, σ) = k + hk(k − k) + hθ(θ − θ) + hσσ + 1/2(

+hkk(k − k)2 + 2hkθ(k − k)(θ − θ) + 2hkσ(k − k)σ

+hθθ(θ − θ)2 + 2hθσ(θ − θ)σ + hσσσ
2) and (3.52)

g(k, θ, σ) = c+ gk(k − k) + gθ(θ − θ) + gσσ + 1/2(

+gkk(k − k)2 + 2gkθ(k − k)(θ − θ) + 2gkσ(k − k)σ

+gθθ(θ − θ)2 + 2gθσ(θ − θ)σ + gσσσ
2) and (3.53)

From the discussion above we know that gσ and hσ are equal to zero. We
will now show that gkσ, gθσ, hkσ, and hθσ are equal to zero too. That is,
the value of σ only shows up in the constant of the policy rules. Consider,
for example, gkσ and hkσ. These are solved from

Fkσ(x, 0) = 0. (3.54)

We get the derivative by differentiating the expression in Equation (3.48).
This gives
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Fσk(x, σ) = Et

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(fk0k + fk0k0hk + fk0cgk + fk0c0gkhk)hσ+
fk0hσk+

(fθ0k + fθ0k0hk + fθ0cgk + fθ0c0gkhk)ε
0+

(fck + fck0hk + fccgk + fcc0gkhk)gσ+
fcgσk+µ

(fc0k + fc0k0hk + fc0cgk + fc0c0gkhk)×
(gkhσ + gθε

0 + gσ)

¶
+

fc0(gkkhkhσ + gkhσk)
fc0gθkhkε

0+
fc0gσkhk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.55)
Note that the arguments of the functions are suppressed. Here we stop at
second order. That is we are not going to differentiate further and sup-
pressing arguments doesn’t matter. But if you do want to go on and ob-
tain higher-order terms, it is better not to do so. That is, the above nota-
tion doesn’t make clear whether gk stands for gk(k, θ, σ) or gk(k0, θ

0, σ) =
gk(h(k, θ, σ), θ

0, σ) and of course this difference is important if you differ-
entiate.
Evaluating the last expression at the steady state we get

Fσk(x, 0) = fk0hσk + fcgσk + fc0(gkhσk) + f c0gσkhk (3.56)

=
¡
fk0 + fc0gk

¢
hσk +

¡
fc + fc0

¢
gσkhk = 0 (3.57)

Again we have two independent equations (together with 0 = 0) in two
unknowns gσk and hσk. The solution is gσk = hσk = 0 and unless there is
a singularity this is the unique solution.
So only the constants gσσ and hσσ are affected by the amount of uncer-

tainty. Do not underestimate the importance of this. A different value for
the constant term in a policy rule implies that the system will operate in
a different part of the state space. For example, the higher coefficients can
capture a buffer stock motive that induces agents to have on average higher
capital stocks. Now if the second-order terms of capital are not equal to
zero then being in a different part of the state space also implies that the
response of the system depends on where you are. Consequently, different
values for gσσ and hσσ can indirectly also affect how sensitive the economy
is to shocks.
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3.6 Why not all ways to do LQ approximations are
correct

A linear quadratic dynamic programming problem has a quadratic objec-
tive and linear constraints.4 This problem, the optimal linear regulator
problem is studied extensively and can be solved without numerical error.
Suppose that one has a problem for which the problem is not quadratic
and the constraints not linear. One might be tempted to take a quadratic
approximation of the objective function and a linear approximation to the
constraints and then solve the optimal linear regulator problem. This turns
out not to be the right way to implement the LQ procedure in the sense that
the linear solution does not in general correspond to the first-order Taylor
expansion of the true solution. We will document this using a simple ex-
ample. In particular, we will first give the set of equations that determine
the first-order solution of the perturbation procedure, which by construc-
tion gives the first-order Taylor expansion of the true policy function. This
makes clear that the correct first-order Taylor expansion also depends on
second-order terms of the constraint. Benigno and Woodford (2006) refer
to this way to take LQ approximations as the "naive LQ approximation".
Next we use the example to discuss a modified LQ procedure that is correct.
We focus on the following model.

max
x,y

min
λ

f(x, y, a) + λ(b− g(x, y, a))

s.t. λ ≥ 0

Here f and g are scalar functions and x, y, and a are scalars as well.
The simple structure will be helpful in clarifying the points made but the
arguments are much more general. The first-order conditions can be
written as

fx(x, y, a)− λgx(x, y, a) = 0, (3.58)

fy(x, y, a)− λgy(x, y, a) = 0, and (3.59)

g(x, y, a) = b. (3.60)

The solutions to this system of equations are

x = hx(a), (3.61)

y = hy(a), and (3.62)

λ = hλ(a). (3.63)

4One can only deal with linear constaints since these are multiplied by the Lagrange
multipliers in the Lagrangian making the constraint term also of second order.
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Using this, we can write the first-order conditions as

fx(h
x(a), hy(a), a)− λ(a)gx(h

x(a), hy(a), a) = 0, (3.64)

fy(h
x(a), hy(a), a)− λ(a)gy(h

x(a), hy(a), a) = 0, and (3.65)

g(hx(a), hy(a), a) = b. (3.66)

The Taylor expansions of the policy functions are given by

hx(a) = h
x
+ h

x

a(a− a) + h
x

aa(a− a)2 + · · · , (3.67)

hy(a) = h
y
+ h

y

a(a− a) + h
y

aa(a− a)2 + · · · , and (3.68)

hλ(a) = h
λ
+ h

λ

a(a− a) + h
λ

aa(a− a)2 + · · · (3.69)

The first-order derivatives evaluated at a = a are h
x

a, h
y

a, and h
λ

a . Differen-
tiating the first-order conditions and evaluating them at a = a gives

fxxh
x

a + fxyh
y

a + fxa − λ(gxxh
x

a + gxyh
y

a + gxa)− gxh
λ

a = 0,(3.70)

fyxh
x

a + fyyh
y

a + fya − λ(gyxh
x

a + gyyh
y

a + gya)− gyh
λ

a = 0,(3.71)

gxh
x

a + gyh
y

a + ga = 0.(3.72)

This can be written as⎡⎣ fxx − λgxx fxy − λgxy −gx
fyx − λgyx fyy − λgyy −gy
−gx −gy 0

⎤⎦
⎡⎢⎣ h

x

a

h
y

a

h
λ

a

⎤⎥⎦ =
⎡⎣ −fxa + λgxa
−fya + λgya
−ga

⎤⎦ (3.73)

With this system we can solve for the first-order perturbation terms. Note
that they depend on the second-order properties of the constraints (gxx,
gxy, etc.). These would not show up when one linearizes the constraints.

3.7 Correct LQ procedure

There are different ways in which one can deal with the problem encoun-
tered above. One could try to get rid of the constraints (or make them
linear) by substituting out or redefining variables. This is not always pos-
sible. Here we discuss a general LQ procedure for which the linear solution
does correspond to the first-order Taylor expansion.5 That is, it corresponds

5This part of the note is based on Benigno and Woodford (2006) and has benefitted
from comments by PierPaolo Benigno and Michael Woodford. Also see Altissimo, Curdia,
and Rodrıguez-Palenzuela (2005) and Debortoli and Nunes (2006).
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with the solution procedure implied by Equation (3.73). The standard for-
mulation of the LQ approximation can be written as

max
x,y

min
λ

fxex+ fyey + faea
+1
2

⎡⎣ exeyea
⎤⎦0 ⎡⎣ fxx fxy fxa

fyx fyy fya
fax fay faa

⎤⎦⎡⎣ exeyea
⎤⎦

+λ
£
−gxex− gyey − gaea¤

(3.74)

Here ez = z−z.Now consider a second-order approximation of the constraint

0 ≈

gxex+ gyey + gaea
+1
2

⎡⎣ exeyea
⎤⎦0 ⎡⎣ gxx gxy gxa

gyx gyy gya
gax gay gaa

⎤⎦⎡⎣ exeyea
⎤⎦ (3.75)

Next we multiply both sides of this expression by λ and use the first-order
conditions at the steady state values, i.e., at a = a. This gives

fxex+ fyey + λgaea
+1
2λ

⎡⎣ exeyea
⎤⎦0 ⎡⎣ gxx gxy gxa

gyx gyy gya
gax gay gaa

⎤⎦⎡⎣ exeyea
⎤⎦ (3.76)

Subtracting this expression from the Lagrangian (and ignoring constant
terms) gives

max
x,y

min
λ

1

2

⎡⎣ exeyea
⎤⎦0 ⎡⎣ fxx − λgxx fxy − λgxy fxa − λgxy

fyx − λgyx fyy − λgyy fya − λgya
fax − λgax fay − λgay faa − λgaa

⎤⎦⎡⎣ exeyea
⎤⎦
(3.77)

+λ
£
b− g − gxex− gyey − gaea¤

By entering second-order properties of the constraint we have at least some
chance of getting the correct first-order Taylor expansion. Also note that
the first-order terms have disappeared from the objective function. This is
already a convenient property. The linear solution that comes out of this is
going to be at best the correct first-order Taylor expansion. Consequently,
it is in general wrong in the second-order terms. But if you substitute
such a policy function into the linear terms of the objective function then
the objective function also has second-order mistakes. But the objective
function is supposed to be the correct second-order approximation.
Anyway, we are really interested in knowing whether this leads to the

correct first-order Taylor expansion. To see this calculate the first-order
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conditions of this problem. They are given by⎡⎣ fxx − λgxx fxy − λgxy −gx
fyx − λgyx fyy − λgyy −gy
−gx −gy 0

⎤⎦⎡⎣ exey
λ

⎤⎦ =
⎡⎣ −fxa + λgxa
−fya + λgya
−ga

⎤⎦ea.
(3.78)

But this system corresponds exactly to Equation (3.73). 6

Modification of the objective function and change in Lagrange multiplier

The procedure outlined above boils down to subtracting the second-order
formulation of the constraint given in Equation (3.76) from the original
objective function given in (3.74). Thus, whenever the constraints hold,
this does not entail any change in the objective function since one would
simply be adding zero to the objective function. This is not true when
the constraints are not satisfied, so we are indeed changing the objective
function.
This shift in the objective function does have an effect on the Lagrange

multiplier. In fact, Equation (3.78) makes clear that when ea = 0, that the
value of the Lagrange multiplier is equal to zero.7 But we have also seen
that this shift does not have an effect on the first-order term that relates
changes in ea to changes in λ. An easy way to "undo" the effect of the shift
of the objective function on the Lagrange multiplier is to use the following
modified LQ specification.

max
x,y

min
λ

1

2

⎡⎣ exeyea
⎤⎦0 ⎡⎣ fxx − λgxx fxy − λgxy fxa − λgxy

fyx − λgyx fyy − λgyy fya − λgya
fax − λgax fay − λgay faa − λgaa

⎤⎦⎡⎣ exeyea
⎤⎦
(3.79)

+eλ £b− g − gxex− gyey − gaea¤ .
That is, we replace λ by eλ = λ− λ. Note that this is not a replacement of
the Lagrange multiplier term by its first-order approximation. This would
give λ = eλ + λ. Obviously, replacing λ by eλ is just a change in notation
and the value for eλ obtained with (3.79) will be identical to the value for
λ obtained with (3.77). Thus, by using (3.79) we will now get that eλ = 0
when ea = 0. But this means that if we use (3.79) we get λ = λ when ea = 0,
which is the desired outcome.

6Note that the modification of the objective function results in a zero value of the
Lagrange multiplier when a = 0 even though in the original problem λ > 0. Note that by
construction the constraint does still hold with equality when a = 0. If one is interested
in getting the right value of λ that is close to that of the original problem one can replace
λ by (λ− λ) in (3.77).

7Note that although the Lagrange multiplier is zero, the constraint is still satisfied
at a = 0, it is just not binding.
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In other words, the effect of the shift in the objective function due to
adding the second-order approximation of the constraint is undone by a
shift in the Lagrange multiplier.

Exercise 1 Consider the following model

E [f(k0, e0)] = 0

e0 = σε0,

where ε0 is a random variable with the following properties

E [ε0] = 0

E
h
(ε0)

2
i
= ζ2

E
h
(ε0)

3
i
= ζ3 6= 0

Note that there are no state variables in this model. The solution is, thus,
simply a constant, but this constant choice does depend on the model pa-
rameters, σ, ζ2, and ζ3. The idea of perturbation is to find a solution by
solving for the coefficients of the Taylor expansion

k0 = g(σ).

Show that the first-order, second-order, and third-order coefficient are equal
to

ḡσ = −
E
£
ε0fe0(k̄, 0)

¤
fk(k̄, 0)

= 0,

ḡσ2 = −
f(e0)2(k̄, 0)E

h
(ε0)2

i
fk(k̄, 0)

= −
f(e0)2(k̄, 0)ζ2

fk(k̄, 0)
, and

ḡσ3 =
f(e0)3(k̄, 0)E

h
(ε0)3

i
fk(k̄, 0)

= −
f(e0)3(k̄, 0)ζ3

fk(k̄, 0)
.
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FIGURE 3.3. Log level approximations
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FIGURE 3.4. Log level approximations continued


