Solving Models with Heterogeneous Agents - KS algorithm

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Individual agent

- Subject to employment shocks ($\varepsilon_{i,t} \in \{0,1\}$)
- Incomplete markets
 - only way to save is through holding capital
 - borrowing constraint $k_{i,t+1} \ge 0$

Laws of motion

- *z_t* can take on two values
- $\varepsilon_{i,t}$ can take on two values
- probability of being (un)employed depends on z_t
- transition probabilities are such that unemployment rate only depends on current z_t . Thus:

•
$$u_t = u^b$$
 if $z_t = z^b$

- $u_t = u^g$ if $z_t = z^g$
- with $u^b > u^g$.

Individual agent

KS

$$\max_{\{c_{i,t},k_{i,t+1}\}_{t=0}^{\infty}} E \sum_{t=0}^{\infty} \beta^t \ln(c_{i,t})$$

s.t.

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \bar{l} \varepsilon_{i,t} + \mu w_t (1 - \varepsilon_{i,t}) + (1 - \delta) k_{i,t} \\ k_{i,t+1} \ge 0$$

for **given** processes of r_t and w_t , this is a relatively simple problem

Firm problem

$$r_t = z_t \alpha \left(\frac{K_t}{\overline{l}(1-u(z_t))}\right)^{\alpha-1}$$
$$w_t = z_t(1-\alpha) \left(\frac{K_t}{\overline{l}(1-u(z_t))}\right)^{\alpha}$$

Government

$$\tau_t w_t \overline{l}(1 - u(z_t)) = \mu w_t u(z_t)$$

$$\tau_t = \frac{\mu u(z_t)}{\overline{l}(1 - u(z_t))}$$

What aggregate variables do agents care about?

- r_t and w_t
- They only depend on aggregate capital stock and z_t
- !!! This is not true in general for equilibrium prices
- Agents are interested in all information that forecasts K_t
- In principle that is the complete cross-sectional distribution of employment status and capital levels

Equilibrium - first part

- Individual policy functions solving agent's max problem
- A wage and a rental rate given by equations above.

KS

Equilibrium - second part

• A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.

$$f_{t+1} = \mathbf{Y}(z_{t+1}, z_t, f_t)$$

- f_t = beginning-of-period cross-sectional distribution of capital and the employment status after the employment status has been realized.
- z_{t+1} does not affect the cross-sectional distribution of capital but does affect the joint cross-sectional distribution of capital and employment status

Key approximating step

ĸs

- Approximate cross-sectional distribution with limited set of "characteristics"
 - Proposed in Den Haan (1996), Krusell & Smith (1997,1998), Rios-Rull (1997)
- **2** Solve for aggregate policy rule
- Solve individual policy rule for a given aggregate law of motion
- Make the two consistent

Krusell-Smith (1997,1998) algorithm

• Assume the following approximating aggregate law of motion

$$m_{t+1} = \overline{\Gamma}(z_{t+1}, z_t, m_t; \eta_{\overline{\Gamma}}).$$

• Start with an initial guess for its coefficients, $\eta^0_{ar{\Gamma}}$

Krusell-Smith (1997,1998) algorithm

- Use following iteration until $\eta_{\bar{\Gamma}}^{iter}$ has converged:
 - Given $\eta^{iter}_{ar{\Gamma}}$ solve for the individual policy rule
 - Given individual policy rule simulate economy and generate a time series for m_t
- Use a regression analysis to update values of η

$$\eta_{\bar{\Gamma}}^{iter+1} = \lambda \hat{\eta}_{\bar{\Gamma}} + (1-\lambda) \eta_{\bar{\Gamma}}^{iter}, \ \text{with} \ 0 < \lambda \leq 1$$

Solving for individual policy rules

- Given aggregate law of motion \implies you can solve for individual policy rules with your favourite algorithm
- But number of state variables has increased:
 - State variables for agent: $s_{i,t} = \{\varepsilon_{i,t}, k_{i,t}, s_t\}$
 - with $s_t = \{z_t, m_t\} = \{z_t, K_t, \tilde{m}_t\}.$

Solving for individual policy rules

- *s_t* must "reveal" *K_t*
 - $s_t \Longrightarrow K_t \Longrightarrow r_t$ and r_t

• Let
$$K_{t+1} = \bar{\Gamma}_K(z_{t+1}, z_t, s_t; \eta_{\bar{\Gamma}})$$
, $\tilde{m}_{t+1} = \bar{\Gamma}_{\tilde{m}}(z_{t+1}, z_t, s_t; \eta_{\bar{\Gamma}})$

 If st includes many characteristics of the cross-sectional distribution ⇒ high dimensional individual policy rule

First choice to make:

KS

- Which function to approximate?
- Here we approximate $k_{i}\left(\cdot
 ight)$

$$k_{i,t+1} = P_n(s_{i,t};\eta_{P_n})$$

• N_{η} : dimension η_{P_n}

Next: Design grid

- s_{κ} the $\kappa^{\rm th}$ grid point
- $\{s_\kappa\}_{\kappa=1}^\chi$ the set with χ nodes
- $s_{\kappa} = \{\varepsilon_{\kappa}, k_{\kappa}, s_{\kappa}\}$, and $s_{\kappa} = \{z_{\kappa}, K_{\kappa}, \tilde{m}_{\kappa}\}$

Next: Implement projection idea

- Substitute approximation into model equations until you get equations of only
 - 1 current-period state variables
 - **2** coefficients of approximation, η_{P_n}
- **2** Evaluate at χ grid points $\Longrightarrow \chi$ equations to find η_{P_n}
 - $\chi = N_\eta \Longrightarrow$ use equation solver
 - $\chi > N_\eta \Longrightarrow$ use minimization routine

First-order condition

$$c_{t}^{-\nu} = \mathsf{E} \begin{bmatrix} \beta(r(z',K') + (1-\delta)) \times \\ c_{t+1}^{-\nu} \end{bmatrix}$$

(income_{i,t} - k_{i,t+1})^{-\nu} = \mathsf{E} \begin{bmatrix} \beta(r(z',K') + (1-\delta)) \times \\ (income_{i,t+1} - k_{i,t+2})^{-\nu} \end{bmatrix}

First-order condition

$$\left(\begin{array}{c} (r(z_{\kappa},K_{\kappa})+1-\delta)k_{\kappa}\\ +(1-\tau(z_{\kappa}))w(z_{\kappa},K_{\kappa})\overline{l}\varepsilon_{\kappa}+\mu w(z_{\kappa},K_{\kappa})(1-\varepsilon_{\kappa})\\ -P_{n}(s_{\kappa};\eta_{P_{n}})\end{array}\right)^{-\nu}$$

$$= \mathsf{E} \left[\begin{array}{c} \beta(r(z',K') + (1-\delta)) \times \\ (r(z',K') + 1 - \delta) P_n(s_{\kappa};\eta_{P_n}) \\ + (1 - \tau(z')) w(z',K') \bar{l}\varepsilon' + \mu w(z',K')(1-\varepsilon') \\ - P_n(s';\eta_{P_n}) \end{array} \right]^{-\nu} \right]$$

Euler equation errors:

$$u_{\kappa} = \left(\begin{array}{c} (r(z_{\kappa}, K_{\kappa}) + 1 - \delta)k_{\kappa} \\ + (1 - \tau(z_{\kappa}))w(z_{\kappa}, K_{\kappa})\overline{l}\varepsilon_{\kappa} + \mu w(z_{\kappa}, K_{\kappa})(1 - \varepsilon_{\kappa}) \\ - P_n(s_{\kappa}; \eta_{P_n}) \end{array}\right)^{-\nu} -$$

$$\sum_{z'\in\{z^b,z^g\}}\sum_{\varepsilon'\in\{0,1\}}\left[\begin{array}{c}\beta(r(z',K')+(1-\delta))\times\\(r(z',K')+1-\delta)P_n(s_{\kappa};\eta_{P_n})\\+(1-\tau(z'))w(z',K')\bar{l}\varepsilon'\\+\mu w(z',K')(1-\varepsilon')\\-P_n(s';\eta_{P_n})\\\pi(\varepsilon',z'|z_{\kappa},\varepsilon_{\kappa})\end{array}\right]^{-\nu}\times\right]$$

KS

Error depends on known variables and η_{P_n} when using

$$r(z_{\kappa}, K_{\kappa}) = \alpha z_{\kappa} (K_{\kappa}/L(z_{\kappa}))^{\alpha-1}$$

$$w(z_{\kappa}, K_{\kappa}) = (1-\alpha) z_{\kappa} (K_{\kappa}/L(z_{\kappa}))^{\alpha}$$

$$r(z',K') = \alpha z'(K'/L(z'))^{\alpha-1}$$

= $\alpha z'(\overline{\Gamma}_K(z',z_{\kappa},s_{\kappa};\eta_{\overline{\Gamma}})/L(z'))^{\alpha-1}$
 $w(z',K') = (1-\alpha)z'(K'/L(z'))^{\alpha}$
= $(1-\alpha)z'(\overline{\Gamma}_K(z',z_{\kappa},s_{\kappa};\eta_{\overline{\Gamma}})/L(z'))^{\alpha}$

$$\tau(z) = \mu(1 - L(z))/\overline{l}L(z))$$

$$s' = \left\{ \begin{array}{c} k', \varepsilon', z', \\ \bar{\Gamma}_{K}(z', z_{\kappa}, s_{\kappa}; \eta_{\bar{\Gamma}}), \bar{\Gamma}_{\tilde{m}}(z', z_{\kappa}, s_{\kappa}; \eta_{\bar{\Gamma}}) \end{array} \right\}$$

KS

Again standard projection problem

• Find η_{P_n} by minimizing $\sum_{\kappa=1}^{\chi} u_{\kappa}^2$

Remaining issues

- ① Using just the mean and approximate aggregation
- Ø Simulation
- 3 Other models and always ensuring equilibrium

Approximate aggregation

- The mean is often sufficient \Rightarrow close to complete markets
- Why does only the mean matter?

Approximate aggregation

- Approximate aggregation \equiv
 - Next period's prices can be described quite well using
 - exogenous driving processes
 - means of current-period distribution
- Approximate aggregation
 - ullet
 eq aggregates behave as in RA economy
 - with *same* preferences
 - with any preferences
 - \neq individual consumption behaves as aggregate consumption

KS

Why approximate aggregation

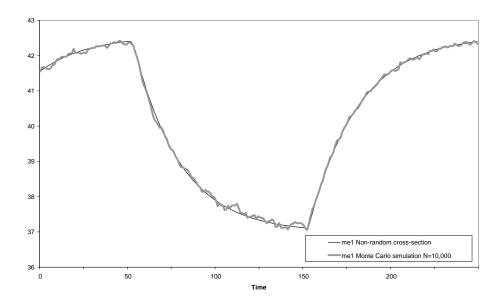
- If policy function *exactly* linear in levels
 - so also not loglinear
- then redistributions of wealth don't matter at all ⇒
 Only mean needed for calculating next period's mean
- Approximate aggregation still possible with non-linear policy functions
 - but policy functions must be sufficiently linear where it matters

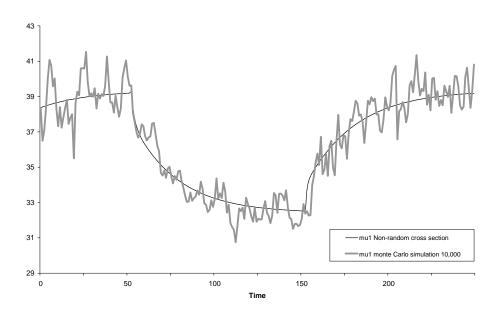
How to simulate?

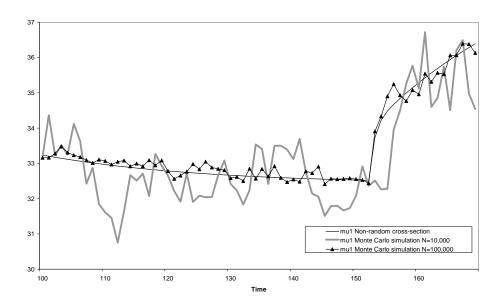
- Numerical procedure with a continuum of agents
- What if you really do like to simulate a panel with a finite number of agents?
 - Impose truth as much as possible: if you have 10,000 agents have exactly 400 (1,000) agents unemployed in a boom (recession)
 - Even then sampling noise is non-trivial

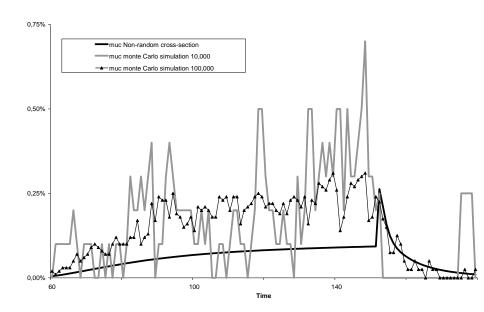
KS

Simulation and sampling noise









KS - Issues

Imposing equilibrium

- In model above, equilibrium is automatically imposed in simulation
- Why?

Imposing equilibrium

- What if we add one-period bonds?
 - Also solve for
 - individual demand for bonds, $b(s_{i,t})$
 - bond price, $q(s_t)$
 - Simulated aggregate demand for bonds not necessarily = 0
 - Why is this problematic?

KS

Bonds and ensuring equiibrium I

- Add the bond price as a state variable in individual problem
 - a bit weird (making endogenous variable a state variable)
 - risky in terms of getting convergence

Bonds and ensuring equiibrium II

• Don't solve for

KS

 $b_i(s_{i,t})$

• but solve for

 $b_i(q_t, s_{i,t})$

- where dependence on q_t comes from an equation
- Solve *q*^{*t*} from

$$0 = \left(\sum_{i}^{I} b_i(q_t, s_{i,t})\right) / I$$

Bonds and ensuring equilbrium II

- How to get $b_i(q_t, s_{i,t})$?
 - **①** Solve for $d_i(s_{i,t})$ where

$$d(s_{i,t}) = b(s_{i,t}) + q(s_t)$$

- this adds an equation to the model
- **2** Imposing equilibrium gives

$$0 = \left(\sum b_i(q_t, s_{i,t})\right) / I \implies$$

$$q_t = \left(\sum d_i(s_{i,t})\right) / I$$

$$b_{i,t+1} = d(s_{i,t}) - q(s_t)$$

Bonds and ensuring equiibrium II

- Does any $b_i(q_t, s_{i,t})$ work?
- For sure it needs to be a demand equation, that is

$$\frac{\partial b_i(q_t,s_{i,t})}{\partial q_t} < 0$$

Bonds and ensuring equiibrium II

Many ways to implement above idea:

- $d(s_{i,t}) = b(s_{i,t}) + q(s_t)$ is ad hoc (no economics)
- Alternative:
 - solve for $c(s_{i,t})$
 - get $b_{i,t}$ from budget constraint which contains q_t
 - You get $b_i(q_t, s_{i,t})$ with

$$\frac{\partial b_i(q_t,s_{i,t})}{\partial q_t} < 0$$

KS algorithm: Advantages & Disadvantages

- simple
- MC integration to calculate cross-sectional means
 - can easily be avoided
- Points used in projection step are clustered around the mean
 - Theory suggests this would be bad (recall that even equidistant nodes does not ensure uniform convergence; Chebyshev nodes do)
 - At least for the model in KS (1998) this is a non-issue; in comparison project the aggregate law of motion for K obtained this way is the most accurate

References

- Algan, Y., O. Allais, W.J. Den Haan, P. Rendahl, 2010, Solving and simulating models with heterogeneous agents and aggregate uncertainty
 - survey article available online
- Den Haan, W. J., 1996, Heterogeneity, Aggregate uncertainty and the short-term interest rate, Journal of Business and Economic Statistics.
 - one of the first articles to solve models with heterogeneous agents and aggregate risk
- Krusell, P. and A.A. Smith Jr., 1998, Income and wealth heterogeneity in the macroeconomy, Journal of Political Economy.
 - develops the most popular algorithm to solve models with heterogeneous agents and has some key insights into these models

- Krusell, P. and A.A. Smith Jr., 2006, Quantitative macroeconomic models with heterogeneous agents, in Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Econometric Society Monographs, ed. by R. Blundell, W. Newey, and T. Persson
 - has useful hints on how to approach models with heterogeneous agents
- Ríos-Rull, J. V., 1997, Computation of equilibria in heterogeneous agent models, Federal Reserve Bank of Minneapolis Staff Report.
 - one of the first articles to solve models with heterogeneous agents and aggregate risk