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Abstract

Although almost nonexistent �fteen years ago, there are now numerous papers

that analyze models with both aggregate uncertainty and a large number� typically a

continuum� of heterogeneous agents. These models make it possible to study whether

macroeconomic �uctuations a¤ect di¤erent agents di¤erently and whether heterogene-

ity in turn a¤ect macroeconomic �uctuations. This chapter reviews di¤erent algo-

rithms to solve and simulate these models. In addition, it highlights problems with

popular accuracy tests and discusses more powerful alternatives.
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1 Introduction

The development of computational algorithms to solve economic models with heteroge-

neous agents and aggregate uncertainty started in the second half of the nineties. Early

examples are Campbell (1998), Den Haan (1996, 1997) and Krusell and Smith (1997,

1998).1 The presence of aggregate uncertainty implies that the cross-sectional distribution

of agents�characteristics is time varying and, thus, has to be included in the set of state

variables. This implies that the individual policy rules depend on a large number of argu-

ments, unless the number of agents is small. In particular, under the common assumption

that there is a continuum of agents, the set of state variables would be in�nite dimensional.

A common feature of existing algorithms is to summarize this in�nite-dimensional object

with a limited set of statistics that summarize the distribution.

Krusell and Smith (1998) consider a model in which employment risk is not fully

insurable because of borrowing constraints and missing insurance markets. They show

that in this environment the model satis�es the "approximate aggregation" property, that

is, the mean of the capital stock is a su¢ cient statistic to predict next period�s prices

accurately.2 The reason for this important �nding is that the marginal propensity to save

is very similar across agents with di¤erent income and wealth levels� except for the very

poor. Since there are not many poor agents and their wealth is small, the similarity of the

marginal propensity to save of the other agents implies that redistributions of wealth have

no e¤ect on aggregate savings and, thus, not on market prices. This is quite a general result

and remains valid if, for example, the amount of idiosyncratic risk is increased. Important

is that the amount of aggregate savings is endogenous. This implies that the average agent

can build up a wealth level that is so high that the chance of the constraint being binding

is small. Den Haan (1997) considers a model in which aggregate savings are zero. In this

model, the borrowing constraint is more frequently binding and higher-order moments

do matter. Krusell and Smith (2006) say in their conclusion that "we foresee important

1Recently, the Journal of Economic Dynamics and Control devoted a special issue to these models. See
Den Haan, Judd, and Juillard (2010a) for further information.

2Here and in the remainder of this chapter, the phrase "su¢ cient (set of) statistic(s)" means that a
su¢ ciently accurate approximation can be achieved, it is not used in the strict statistical sense.
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examples of such phenomena [i.e., quantitatively convincing models with large departures

from approximate aggregation] to be discovered in future research". Such models will,

without doubt, be harder to solve and as we move into solving more complex models, the

need for alternative algorithms and careful testing of accuracy becomes more important.

Existing algorithms di¤er in important aspects from each other. While the �rst al-

gorithms relied heavily on simulation procedures, the newer algorithms try to build al-

gorithms using building blocks proven to be fruitful in the numerical literature such as

projections methods and perturbation techniques.

In addition to reviewing solution algorithms, this chapter also reviews di¤erent pro-

cedures to simulate economies with a continuum of agents. Simulations are an essential

ingredient in several of the algorithms and typically are important even when the algo-

rithms themselves do not rely on simulations. The reason is that many properties of the

model can only be calculated through simulation. With a continuum of agents, simulation

is nontrivial. In the most commonly used procedure, the continuum of agents is approx-

imated with a large but �nite number of agents. This introduces unnecessary sampling

variation that may be substantial for some groups of the population. We review several

alternative procedures that are more accurate and faster.

Another important topic of this chapter is a discussion on how to check for accuracy.

The standard procedure to check for accuracy is to use the R2 or the standard error of the

regression, the two accuracy measures that Krusell and Smith (1998) focus on. Den Haan

(2010a) shows that these are very weak measures. In particular, it is shown that aggregate

laws of motion that di¤er substantially from each other in important dimensions can all

have a very high R2 and a low regression standard error. Den Haan (2010a) also proposes

an alternative accuracy test that is more powerful. Note that Krusell and Smith (1996,

1998) actually consider several alternative accuracy measures. One of them, the maximum

forecast error at a long forecast horizon, turns out to be much more powerful in detecting

inaccuracies than the R2 and the standard error.

This chapter is organized as follows. In Section 2, we describe the model that we

use to illustrate the di¤erent algorithms. In Sections 3 and 6, we describe the numerical
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solution and the numerical simulation procedures, respectively. In section 4, we discuss the

importance of ensuring that the numerical solution satis�es market clearing. In Section

5, we discuss the result from Krusell and Smith (1998) that the mean capital stock is a

su¢ cient statistic, i.e., approximate aggregation. In Section 7, we discuss accuracy tests

and in Section 8, we compare the properties of the di¤erent algorithms. The last section

concludes.

2 Example economy

The model described in this section is an extension of Krusell and Smith (1998).3 Its

relative simplicity makes it very suitable to illustrate the key features of the di¤erent

algorithms. Another reason to focus on this model is that its aggregation properties have

been quite in�uential.

Problem for the individual agent. The economy consists of a continuum of ex ante

identical households with unit mass. Each period, agents face an idiosyncratic shock e

that determines whether they are employed, e = 1, or unemployed, e = 0. An employed

agent earns an after-tax wage rate of (1� � t)wt and an unemployed agent receives unem-

ployment bene�ts �wt.4 Markets are incomplete and agents can only save through capital

accumulation. The net rate of return on investment is equal to rt � �, where rt is the

rental rate and � is the depreciation rate. Agent i�s maximization problem is as follows:

max
fci;t;ki;t+1g1t=0

E
P1
t=0 �

t c
1�

i;t �1
1�


s.t. ci;t + ki;t+1 = rtki;t +
�
(1� � t)lei;t + �(1� ei;t)

�
wt + (1� �)ki;t

ki;t+1 � 0

(1)

Here ci;t is the individual level of consumption, ki;t is the agent�s beginning-of-period

capital, and l is the time endowment. We set 
 equal to 1 to simplify the notation.

3The version described here includes labor taxes that are used to �nance unemployment bene�ts. These
are not present in Krusell and Smith (1998).

4Krusell and Smith (1998) set � equal to zero. To ensure that the constraint is occasionally binding,
we assume that � is positive.
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The Euler equation error, vi;t, is de�ned as

vi;t =
1

ci;t
� Et

�
�
rt+1 + 1� �
ci;t+1

�
(2)

and the �rst-order conditions of the agent are given by

vi;t � 0;

vi;tkt+1 = 0; and

kt+1 � 0:

(3)

Firm problem. Markets are competitive and the production technology of the �rm is

characterized by a constant-returns-to-scale Cobb-Douglas production function. Conse-

quently, �rm heterogeneity is not an issue. Let Kt and Lt stand for the per capita capital

stock and the employment rate, respectively. Per capita output is given by

Yt = atK
�
t (lLt)

1�� (4)

and prices by

rt = �at

�
Kt

lLt

���1
(5)

wt = (1� �) at
�
Kt

lLt

��
(6)

Aggregate productivity, at, is an exogenous stochastic process, that can take on two values,

1��a and 1 + �a.

Government The only role of the government is to tax employed agents and to redis-

tribute funds to the unemployed. We assume that the government�s budget is balanced

each period. This implies that the tax rate is equal to

� t =
�ut

lLt
; (7)

where ut = 1� Lt denotes the unemployment rate in period t.

4



Exogenous driving processes. There are two stochastic driving processes. The �rst

is aggregate productivity and the second is the employment status. Both are assumed to

be �rst-order Markov processes. We let �aa0ee0 stand for the probability that at+1 = a0

and ei;t+1 = e0 when at = a and ei;t = e. These transition probabilities are chosen such

that the unemployment rate can take on only two values. That is, ut = u1��a when

at = 1��a and ut = u1+�a when at = 1 +�a with u1��a > u1+�a .5

Equilibrium Krusell and Smith (1998) consider recursive equilibria in which the policy

functions of the agent depend on his employment status, ei, his beginning-of-period cap-

ital holdings, ki, aggregate productivity, a, and the cross-sectional distribution of capital

holdings, F .6 An equilibrium consists of the following elements:

1. Individual policy functions that solve the agent�s maximization problem for given

laws of motion of wt and rt.

2. A rental and a wage rate that are determined by Equations (5) and (6), respectively.

3. A transition law for the cross-sectional distribution of capital, that is consistent with

the individual policy function. We let Ft represent the beginning-of-period cross-

sectional distribution of capital and the employment status after the employment

status has been realized. The transition law can be written as

Ft+1 = �(at+1; at; Ft): (8)

This law of motion reveals an advantage of working with a continuum of agents.

The idea is to rely on a law of large numbers, so that conditional on at+1 there is no

uncertainty about Ft+1.7

5See Krusell and Smith (1998) for details.
6Miao (2006) shows the existence of a recursive equilibrium, but also uses expected payo¤s as state vari-

ables. He also shows existence of a recursive solution that is a function of the smaller set of state variables
used by Krusell and Smith (1998), but under an assumption that cannot be checked from primitives. It
remains, therefore, not clear whether a recursive equilibrium exists when the smaller set of state variables
is used. For a numerical solution this is less important in the sense that approximation typically entails
not using all information.

7Experience indicates that invoking a law of large numbers is not problematic in practice. A priori,
however, it is di¢ cult to know whether the necessary regularity conditions are satis�ed since both Ft and
�(�) are endogenous.
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3 Algorithms - overview

There are now several algorithms to solve models with heterogeneous agents and aggregate

uncertainty using a wide range of di¤erent tools from the numerical solution literature.

They include algorithms that use only perturbation techniques like Preston and Roca

(2006); algorithms that use only projection methods, like Den Haan (1997) and Den Haan

and Rendahl (2010); as well as several others that combine di¤erent tools such as Den Haan

(1996), Krusell and Smith (1998), Algan, Allais, and Den Haan (2008), Reiter (2009), and

Reiter (2010). This section is split in two parts. Section 3.1 discusses procedures that

rely on projection approaches, possibly combined with a simulation procedure. These

are global procedures in the sense that properties of the model in di¤erent parts of the

state space a¤ect the numerical solution. Section 3.2 discusses perturbation approaches in

which the numerical solution is pinned down by the derivatives at one particular point. The

purpose of this section is to explain� hopefully in an intuitive manner� the key aspects

of the di¤erent algorithms.

3.1 Projection and simulation approaches

This section discusses four quite di¤erent approaches. It discusses the approach of Krusell

and Smith (1998) in which simulations are used to determine the aggregate laws of mo-

tion; the approach developed in Den Haan (1996), which is a pure simulations approach;

the approach of Algan, Allais, and Den Haan (2008), which is based mainly on projection

methods;8 and �nally the approach developed in Den Haan and Rendahl (2010), which uses

only projection methods. As discussed above, we focus on equilibria in which (i) individual

policy functions depend on st = [ei;t; ki;t; at; Ft] and (ii) next period�s cross-sectional dis-

tribution is a time-invariant function of the current distribution and the aggregate shock.

All existing algorithms summarize the information of the cross-sectional distribution with

a �nite set of elements.
8This algorithm is an improved version of Den Haan (1997).
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3.1.1 Obtain aggregate policy functions from simulation

The most popular algorithm used in the literature is the one developed in Krusell and

Smith (1998). They approximate the in�nite-dimensional cross-sectional distribution with

a �nite set of moments,Mt.9 An approximate solution then consists of an individual policy

function (as a function of the vector st = [ei;t; ki;t; at;Mt]) and a law of motion for Mt+1

of the form

Mt+1 = �(at+1; at;Mt): (9)

The idea underlying this algorithm is fairly straightforward. Notice that the problem of

solving for the individual policy rules is standard and one can use any of the available

algorithms.10 In solving for the individual policy functions, one will run into the problem

of evaluating next period�s prices, which depend on next period�s aggregate capital stock,

but this can be calculated using the mapping �. The algorithm then proceeds using the

following iterative scheme:

1. Start with an initial guess for �, say �0.

2. Using this guess, solve for the individual policy rule.

3. Construct a time series for Mt. That is, using the solution for the individual pol-

icy rule, simulate the economy using one of the simulation techniques discussed in

Section 6. Each period calculate the elements of Mt from the cross-sectional distri-

bution.

4. Use least squares to obtain a new estimate for the law of motion �. This is �1.

5. Iterate until �j+1 is su¢ ciently close to �j .

3.1.2 Obtain aggregate and individual policy functions through simulation

As in Krusell and Smith (1998), Den Haan (1996) also assumes that the cross-sectional

distribution is characterized by a �nite set of moments, Mt. He solves for the individual
9The aggregate capital stock, Kt, is either an element ofMt or can be calculated from Mt (and possibly

at).
10Several of the procedures discussed in Taylor and Uhlig (1991) are still in use. See Judd (1998) for a

thorough discussion of alternative algorithms.
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policy rules from a simulation procedure, which avoids having to specify an approximating

law of motion for the transition of Mt.11

Den Haan (1996) parameterizes the conditional expectation, but it is also possible

to approximate the consumption or the capital choice. With this approximation, the

optimality conditions of the agent can be written as

ci;t + ki;t+1 = rtki;t +
�
(1� � t)lei;t + �(1� ei;t)

�
wt + (1� �)ki;t; (10)

vi;t =
1

ci;t
� exp fPn(ei;t; ki;t; at;Mt;�p)g ; (11)

vi;t � 0;

vi;tkt+1 = 0; and

kt+1 � 0;

(12)

where Pn(�;�p) is a �exible functional form of order n with coe¢ cient vector �p.12 The

algorithm works as follows:

1. Start with an initial guess for the parameterized conditional expectation, charac-

terized by its coe¢ cients, �p. Note that this is equivalent to having the individual

policy functions for consumption and capital.

2. Use the individual policy rule to simulate a time series forMt and the choices for one

agent. That is, we obtain a time series for [ei;t; ki;t; at;Mt]. Prices can be calculated

using the observed cross-sectional mean capital stock. Let yi;t+1 be equal to

yi;t+1 = �
rt+1 + 1� �
ci;t+1

: (13)

Note that

yi;t+1 = Et [yi;t+1] + "i;t+1 � exp fPn(ei;t; ki;t; at;Mt;�p)g+ "i;t+1; (14)

11 In contrast to the algorithm of Krusell and Smith (1998), this algorithm does not require that the
aggregate capital stock is an element of or can be calculated from Mt. For example, Mt could only include
a set of percentiles.
12Throughout this paper, we use Pn(�;�) to indicate a �exible functional form of order n with coe¢ cients

�. The notation will not make clear that di¤erent types of functional forms may be used for di¤erent
objects.
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where "i;t+1 is a prediction error that is orthogonal to the variables in the time t

information set.13 This means one can use nonlinear least squares to get a new

estimate of �p.

3. Iterate until the values for �p have converged.

This procedure is similar to the one used by Krusell and Smith (1998), but it does not

require specifying an approximation to the law of motion for the moments that are used as

state variables. The reason is the following. Krusell and Smith (1998) use the approxima-

tion to the aggregate law of motion to describe next period�s prices in terms of next period�s

value of a and this period�s moments. If one projects yi;t+1 on exp fPn(ei;t; ki;t; at;Mt; �)g,

then this transition law is automatically taken into account without having speci�ed a

particular functional form to describe it.

3.1.3 Obtain aggregates by integrating over a parameterized distribution

Next, we discuss the algorithm of Den Haan (1997) and the improved version developed in

Algan, Allais, and Den Haan (2008). As in Den Haan (1996), the conditional expectation

of the individual agent is parameterized and the objective is to solve for the value of �p.

Moreover, the cross-sectional distribution is characterized with a �nite set of moments,

Mt, and the state variables are, thus, again given by ei;t, ki;t, at, and Mt. Nevertheless,

these are very di¤erent algorithms. Whereas Den Haan (1996) is based on simulations, the

algorithm of Den Haan (1997) uses textbook projection methods. A textbook projection

procedure consists of (i) a grid in the state variables, (ii) a quadrature procedure to

calculate the conditional expectation in Equation (2), and (iii) an equation solver to �nd

the coe¢ cients of the approximating function for which the errors on the grid are equal

to zero.14

For the type of problem considered in this paper, it is not straightforward to solve the

model using standard projection techniques. Some additional information is required. To

13 If the orthogonality property is not satis�ed, then it is possible to construct better forecasts; conse-
quently, exp fPn(ei;t; ki;t; at;Mt;�p)g cannot be the conditional expectation.
14Or a minimization routine to minimize some loss criterion in case there are more grid points than

coe¢ cients.
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understand why, consider a particular grid point, that is, a particular combination of ei;t,

ki;t, at, and Mt. Calculation of

Et

�
�
rt+1 + 1� �
ci;t+1

�
requires knowing the aggregate capital stock, Kt+1. To calculate Kt+1 at a particular grid

point requires not only knowing Mt (and at), but typically requires knowing the actual

distribution.15 Den Haan (1997) deals with this problem by parameterizing the cross-

sectional distribution. Conditional on a particular functional form, say the exponential of

an nth-order polynomial, there is a mapping between the n values ofMt and the coe¢ cients

of the approximating density, �M . For example, if one uses a second-order exponential,

i.e., a Normal density, then the mean and the variance pin down the two elements of �M .16

Given the parameterization Pn(e; k;�M ), the conditional expectation can be calculated

using standard quadrature techniques and standard projection methods can be used to

solve for the coe¢ cients of the individual policy rule, �p.17

Reference moments/distribution. The description so far assumes that the order of

the approximation of the cross-sectional density is directly related to the moments in-

cluded. That is, if n moments are used as state variables, then an nth-order approxima-

tion is used to approximate the cross-sectional density (and vice versa). But this may be

ine¢ cient. For example, it may be the case that only �rst and second-order moments are

needed as state variables, but that (for the particular class of approximating polynomials

chosen) a much higher order approximation is needed to get the shape of the cross-sectional

distribution right.

15As discussed in Section 3.1.4, the algorithm of Den Haan and Rendahl (2010) makes clear that for
some functional forms aggregation is possible without knowing the cross-sectional distribution.
16Algan, Allais, and Den Haan (2008) propose a particular approximating functional form, which makes

it easy to establish the mapping between moments and the approximating functional form. This will be
discussed in Section 6.
17The procedure used in Algan, Allais, and Den Haan (2008) is actually more cumbersome than necessary.

They solve the individual policy rule taking as given an aggregate law of motion for the transition of the
moments, �(a0; a;m). Next, they use the procedure described in the text to update �(a0; a;m). Next,
they iterate between the two problems until there is convergence in the aggregate law of motion, similar
to the procedure used by Krusell and Smith (1998). Note, however, that one does not need to specify an
aggregate law of motion as an intermediate step.
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Algan, Allais, and Den Haan (2008, 2010) improve upon Den Haan (1997) and deal

with this ine¢ ciency by introducing "reference" moments that are characteristics of the

distribution exploited to pin down its the shape, but are not used as state variables.18

Let Mt = [M1;t;M2;t], where M1;t consists of (lower-order) moments that serve as state

variables and are used to construct the grid and where M2;t consists of higher-order refer-

ence moments. On the grid, the values of the reference moments, M2;t, are calculated as a

function of at andM1;t using an approximating function Pn(at;M1;t;�R).19 Algan, Allais,

and Den Haan (2008, 2010) �nd this mapping by simulating a time series for Mt, but this

is the only role for simulations in their algorithm. A numerical solution has to be such

that the relationship between reference moments and other state variables is consistent

with the one that comes out of the simulation.

Histogram as reference distribution. The algorithm of Reiter (2010) is similar to

that of Algan, Allais, and Den Haan (2008, 2010), but di¤ers in its implementation.

Reiter (2010) characterizes the cross-sectional distribution using a histogram and obtains

a complete reference distribution from the simulation. The reference distribution, together

with the values of the moments included as state variables, are then used to construct a

new histogram that is consistent with the values of the state variables and "close" to the

reference distribution. Next period�s values of the cross-sectional moments are calculated

by integrating over this histogram.

3.1.4 Obtain aggregates by explicit aggregation

The idea of the algorithm of Den Haan and Rendahl (2010) is to derive the aggregate laws

of motion directly from the individual policy rules simply by integrating them without using

information about the cross sectional distribution. Before we describe the algorithm, it

will be useful to explain the relationship between the individual policy function and the

set of moments that should be included as state variables in the exact solution. Krusell

and Smith (2006) show that one often can get an accurate solution by using only �rst-

18The idea of reference moments was �rst proposed in Reiter (2010).
19 In Algan, Allais, and Den Haan (2008) the simplifying assumption is made that M2;t only depends on

at, because dependence on M1;t turned out to be not important.
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order moments to characterize the distribution. The fact that individual policy functions

of the models considered are close to being linear, except possibly for rare values of the

state variables, is important. Here we address the question how many moments one has

to include to get the exact solution if the individual policy function is (nearly) linear or

nonlinear.

Relationship between individual policy rule and aggregate moments to include.

Suppose that the individual policy functions for the employed and the unemployed agent

can be written as

k0u = 	u;0(S) +
IX
i=1

	u;i(S)k
i and k0e = 	e;0(S) +

IX
i=1

	e;i(S)k
i; (15)

where S is a vector containing the aggregate state variables a and M . Note that (i) the

individual policy functions are polynomials in the individual state variables, but the spec-

i�cation allows for more general dependence in the employment status and the aggregate

state variables, and (ii) the left-hand side is the level of the capital stock and not, for

example, the logarithm.20 Our argument does not rely on the use of polynomials. Other

basis functions could be used, including those that generate splines. The logic of the algo-

rithm is easiest understood, however, if the policy function are polynomials in the levels

of the individual state variables.

The immediate objective is to calculate end-of-period values of the aggregate state,

given the beginning-of-period values.21 For the policy function given in Equation (15),

which is linear in the coe¢ cients of the ki terms, one can simply integrate across individuals

to get bKu � cMu(1) = 	u;0(S) +
PI
i=1	u;i(S)Mu(i);bKe � cMe(1) = 	e;0(S) +

PI
i=1	e;i(S)Me(i);

(16)

20The discrete nature of the employment status makes it feasible to specify separate approximating
functions for k0 for each realization of the employment status. If individual productivity has continuous
support, k0 would be a polynomial in both individual state variables.
21Given the transition laws of the employment status, next period�s distribution of beginning-of-period

capital levels follows directly from this period�s distribution of end-of-period capital levels and the values
of a and a0.
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where M!(i)
�cM!(i)

�
is the ith uncentered moment of beginning(end)-of-period capital

holdings of agents with employment status !.

The �rst lesson to learn from these expressions is that if the individual policy rule is

an Ith-order polynomial, one has to include at least the �rst I moments of both types of

agents as state variables. Thus,

M = [Mu(1); � � � ;Mu(I);Me(1); � � � ;Me(I)]; (17)

where M!(i) is the ith cross-sectional moment of individual capital holdings for agents

with employment status !.

We now address the question whether this set of moments is enough. First, consider

the case when I = 1, that is, the individual policy rule is linear in k. Then S is equal

to [a;Ku;Ke] and the expressions in (16) are� together with the value of a0� su¢ cient

to calculate M 0. Conditional on the individual policy rule being linear, the model with

heterogeneous agents and aggregate uncertainty can be solved using standard projection

techniques, without relying on simulation procedures or an approximation of the cross-

sectional distribution.

The situation is substantially more complicated if there is just a little bit of nonlinearity.

For simplicity, suppose that I = 2. From the discussion above we know that a minimum

speci�cation for S would be S = [a;Mu(1);Mu(2);Me(1);Me(2)]. This means that to

determine S0 we need expressions for cMu(2) and cMe(2). Using Equation (15) with I = 2

we get �
k0!
�2
=

(	!;0(S))
2 + 2	!;0(S)	!;1(S)k + (2	!;0(S)	!;2(S)

+ (	!;1(S))
2)k2 + 2	!;1(S)	!;2(S)k

3 + (	!;2(S))
2 k4:

(18)

Aggregation of this expression gives us the moments we need, but aggregation of the right-

hand side implies that we have to include the �rst four moments instead of the �rst two

as state variables, that is,

S = [a;Mu(1); � � � ;Mu(4);Me(1); � � � ;Me(4)]:

This means that to determine S0 we need expressions for cM!(3) and cM!(4), which in

turn implies that we need even more additional elements in S. The lesson learned is that
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whenever I > 1 one has to include an in�nite set of moments as state variables to get an

exact solution, even if there are only minor nonlinearities.

Algorithm of Den Haan and Rendahl (2010) The key step in the algorithm of

Den Haan and Rendahl (2010) is to break the in�nite regress problem by approximating

the policy rules that are needed to determine next period�s aggregate state using lower-

order polynomials. Consider again the case with I = 2. If we break the chain immediately

at I = 2, then (k0!)
2 is obtained from the approximation

�
k0!
�2 � 	!;(k0)2;0(S) + 	!;(k0)2;1(S)k +	!;(k0)2;2(S)k2 (19)

and not from Equation (18). Note that 	!;(k0)2;j(S) in Equation (19) is not equal to

	!;j(S). The (k0)2 subscript in 	!;(k0)2;j(S) indicates that the coe¢ cients in the approxi-

mating relationship in Equation (19) are not obtained from the 	!;j(S) coe¢ cients as in

Equation (18), but from a separate projection of (k0!)
2 on the space of included terms. The

coe¢ cients 	!;(k0)2;j(S) are chosen to get the best �t for (k
0
!)
2 according to some measure.

Given that the excluded terms, i.e., k3 and k4, are correlated with the included terms,

these coe¢ cients will also capture some of the explanatory power of the higher-order ex-

cluded terms. The key implication of using Equation (19) instead of Equation (18) is that

aggregation of Equation (19) does not lead to an increase in the set of aggregate state

variables.

For I = 2 the numerical algorithm consists of the following steps. The variables on

the grid are [!; k; a;Mu(1);Mu(2);Me(1);Me(2)]. With the use of Equations (16) and

(19), the error terms de�ned in Equation (2) can be calculated given values for 	!(s) and

	!;(k0)2(s). The algorithm chooses those values for the coe¢ cients that minimize some

objective function of the errors de�ned in Equation (2).

To get expressions for next period�s aggregate variables using explicit aggregation, one

has to break the in�nite regress at some point. One could break it at I = 2 as in the

example above, but one also could break it at some higher level. For example, suppose

again that the individual policy rule is approximated well with a second-order polynomial.

One possibility would be to set I = 4 and approximate k0!, (k
0
!)
2, (k0!)

3 and (k0!)
4 using
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fourth-order polynomials. But an alternative would be to approximate k0! with a second-

order polynomial as above, using Equation (18)� i.e., the exact expression given the policy

rule for k0!, to describe (k
0
!)
2� and construct approximations for (k0!)

3 and (k0!)
4 using

fourth-order polynomials.

Separate individual policy rule for aggregation. It is possible that a high-order

polynomial is needed to accurately describe individual behavior for all possible values

of k. Using this algorithm would then require a lot of aggregate state variables, since

every monomial in the approximating function corresponds to an additional aggregate

state variable. However, one can use a complex approximation to describe individual

behavior and one can use a simpler individual policy rule just to aggregate and obtain the

aggregate laws of motion. In fact, Den Haan and Rendahl (2010) approximate individual

policy rule with a spline,22 but obtain the aggregate law of motion by aggregating a simple

linear approximation of the individual policy rule, and show that they can get an accurate

solution with this approach.

3.2 Perturbation approaches

In this section, we discuss two perturbation procedures. The procedure developed by

Preston and Roca (2006) is a "pure" implementation of the perturbation procedure. We

will see that the order of the implementation used implies which moments of the cross-

sectional distribution should be included. For the perturbation procedure of Preston and

Roca (2006), the non-stochastic steady state, around which the solution is perturbed,

corresponds to the model solution when both aggregate and idiosyncratic uncertainty are

equal to zero. The algorithm of Reiter (2009) combines a perturbation procedure with

projection elements, which makes it possible to perturb the model around the solution of

the model without aggregate uncertainty but with individual uncertainty.

Perturbation methods have the advantage of being fast and since they do not require

the speci�cation of a grid allow for many state variables. Also, projection methods require

22Since a spline can be written as a weighted combination of basis functions, explicit aggregation is
possible with splines. But splines typically have many nodes, which would correspond with a large number
of basis functions, and thus, many aggregate state variables.
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several choices of the programmer, especially in the construction of the grid, whereas

implementation with perturbation techniques is more standard. Perturbation methods also

have disadvantages. Since they are based on a Taylor series expansion around the steady

state, the policy functions are required to be su¢ ciently smooth. Den Haan and De Wind

(2009) discuss another disadvantage. Perturbation approximations are polynomials and,

thus, display oscillations.23 As argued in Den Haan and De Wind (2009), the problem of

perturbation procedures is that one cannot control where the oscillations occur.24 They

could occur close to the steady state and lead to explosive solutions.

3.2.1 Perturbation around scalar steady state values

Preston and Roca (2006) show how to solve models with aggregate uncertainty and het-

erogeneous agents with a perturbation procedure. The steady state they consider is the

solution of the model when there is no aggregate uncertainty and no idiosyncratic uncer-

tainty.

There are some particular features of the model described above that makes it less

suited for perturbation procedures. So we will modify the problem slightly. The idea of

perturbation procedures is to take a local approximation around the point where there

is no uncertainty and then introduce the amount of uncertainty as an explicit variable

in the policy function of the agent. Since perturbation techniques rely on the implicit

function theorem, uncertainty should a¤ect the problem in a smooth way. In the problem

described in Section 2, one can characterize the amount of uncertainty with the probability

of becoming unemployed. But even an increase in the probability of becoming unemployed

from zero to a slightly positive number introduces sudden discontinuous jumps in the

budget set if the individual employment status, ei;t, switches from 0 to 1. If one wants

to use a perturbation technique, it is safer to let the support of ei;t increase continuously

with the perturbation parameter that controls uncertainty.25 Preston and Roca (2006)

23For example, every 2nd -order approximation is non-monotone even if the truth is monotone.
24With projection methods, oscillations of approximating polynomials typically occur outside the grid.

So by choosing the grid one controls where the oscillations occur.
25 In the model discussed above this can be accomplished by letting both the probability and the drop

in income increase continuously with the parameter that controls the amount of uncertainty.
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assume that the law of motion for ei;t is given by

ei;t+1 = (1� �e)�e + �eei;t + "e;i;t+1 (20)

where "e;i;t+1 has variance �2e.
26,27 Similarly, let the law of motion for at be given by

at+1 = (1� �a)�a + �aat + "a;t+1: (21)

Perturbation techniques cannot deal with inequality constraints, because they could

never be captured with the derivatives at the steady state. The inequality constraint is,

therefore, replaced by a smooth penalty function that makes it costly to have low capital

levels. In particular, Preston and Roca (2006) assume that there is a utility cost of holding

ki;t equal to �=k2t .
28 The �rst-order conditions of the agents can then be written as

1

ci;t
= �Et

�
�2�k�3i;t+1 +

(rt+1 + 1� �)
ci;t+1

�
and (22)

ki;t+1 = (1� �)ki;t + rtki;t + wtei;t�l � ci;t: (23)

The order of the perturbation approximation and the set of state variables are related

to each other. If a second-order approximation is used then� as will be explained below�

the state variables for the agent are si;t with

si;t = fki;t; ei;t; Stg (24)

26Below, it will become clear that the analysis relies on implementing the perturbation procedure without
the standard log transformation of the variables. By assuming that the laws of motion for the stochastic
variables, ei;t and at, are linear in levels instead of logs one avoids having to take an approximation of this
exogenous law of motion. As long as the uncertainty is not too large one would not run into problematic
negative values.
27One could allow this law of motion to depend on the aggregate state. This speci�cation implies that

aggregate labor, Lt, is constant, but one could let ei;t depend on the aggregate state.
28 Instead of assuming a utility cost, one can also assume that the cost enters the budget constraint. The

penalty term in the Euler equation is then multiplied by the marginal utility of consumption, which makes
it less powerful because the marginal utility tends to be high when the agent lowers his capital holdings
and it isn�t clear what will happen with the cross product.
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where

St = fat;Kt;�t;	tg; (25)

Kt =

Z 1

0
ki;tdi; (26)

�t =

Z 1

0
(ki;t �Kt)2 di, and (27)

	t =

Z 1

0
(ki;t �Kt) (ei;t � �e)di: (28)

That is, �rst and second-order moments of the cross-sectional distribution are included.

If a �rst-order approximation is used, then only �rst-order moments are included.

Let hz be the policy function for variable z with z 2 fc; k;K;�;	g. To get the

perturbation solution, we write the model as follows:

1

hc (si;t; �)
= �Et

�
�2�hk(si;t; �)�3 +

(rt+1 + 1� �)
hc(si;t+1; �)

�
; (29a)

hk(si;t; �) = (1� �)ki;t + rtki;t + wtei;t�l � hc(si;t; �); (29b)

Kt+1 = hK(St; �) =

Z 1

0
hk(si;t; �)di; (29c)

�t+1 = h�(St; �) =

Z 1

0

�
hk(si;t; �)� �k

�2
di; and (29d)

	t+1 = h	(St; �) =

Z 1

0

�
hk(si;t; �)� �k

�
(ei;t+1 � �e) di: (29e)

Here, �k is the steady state value of capital and � is a scalar parameter that scales both

types of uncertainty, �e and �a. The variables rt, wt, and si;t+1 are given by

rt = �at (Kt=L)
��1 ; (30)

wt = (1� �)at (Kt=L)� ; and (31)

si;t+1 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

ki;t+1

ei;t+1

at+1

Kt+1

�t+1

	t+1

9>>>>>>>>>>>>=>>>>>>>>>>>>;
=

8>>>>>>>>>>>><>>>>>>>>>>>>:

hk(si;t; �);

(1� �e)�e + �eei;t + "e;i;t+1;

(1� �a)�a + �aat + "a;t+1;

hK(at; �);

h�(at; �);

h	(at; �)

9>>>>>>>>>>>>=>>>>>>>>>>>>;
: (32)
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Because of the aggregation constraints, i.e., Equations (29c), (29d), and (29e), it is

important that the solution is speci�ed in the non-transformed level of the variables and

not for example in logs.29 If not, then the functional forms of hK , h�, and h	 would not

be consistent with the functional forms of hc and hk. The aggregation constraint makes

clear what the list of state variables should be for the particular approximation order

chosen. That is, a particular approximation implies a particular law of motion for the

cross-sectional income and wealth distribution, which in turn implies what the relevant

state variables are.

Suppose that one uses a �rst-order approximation. Clearly, ki;t, and ei;t matter for

the individual policy functions. The agent also cares about prices and, thus, about at,

Kt, and future values of Kt. When the savings function is linear in ki;t, at, and Kt, then

the aggregation restriction (together with the linearity of the policy function) implies that

Kt+1 is linear in these variables as well, and that other moments of the cross-sectional

distribution, thus, should not be included.

If the individual policy functions are second-order and in particular include
�
ki;t � �k

�2
and

�
ki;t � �k

�
(ei;t��e), then the aggregation constraint implies that next period�s capital

stock depends on �t and 	t, which means that these should be included as state variables

as well.30

When Equations (30) through (32) are used to substitute out rt+1, rt, wt, and si;t+1,

then Equation (29) speci�es a set of �ve equations in �ve functions: hc(si;t; �), hk(si;t; �),

hK(at; �), h�(at; �), and h	(at; �). Sequentially di¤erentiating the �ve equations and

evaluating the expressions at the steady state gives the equations with which to solve for

the coe¢ cients of the Taylor expansions of the �ve policy functions. In the appendix, we

give an example.

Perturbation approximations specify complete polynomials.31 This means that the

29This would not be true if one would approximate the aggregation constraints as well. Accurately
approximating the aggregation constraints may not be that easy. At the non-stochastic steady state,
agents are equally rich, which would imply that the values of the individual variable across agents get the
same weight in constructing the aggregate. This could very well be inaccurate, given that at each point in
time there typically are large di¤erences in individual wealth levels in this type of model.
30The integral of other products can be simpli�ed. For example,

R
(ki;t � �k)(K � �k)di equals

�
Kt � �k

�2
.

31A complete polynomial of order n in x and y includes all terms xn1yn2 such that n1 + n2 � n:
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term
�
ki;t � �k

�2 is not combined with any other state variables in a second-order approx-
imation, because it is itself a second-order term. Similarly, �t and 	t only appear by

themselves since they are also second-order terms.

Comparison with explicit aggregation. The explicit aggregation algorithm of Den Haan

and Rendahl (2010) and the perturbation algorithm of Preston and Roca (2006) seem to be

at the opposite sides of the spectrum of solution algorithms. The algorithm of Den Haan

and Rendahl (2010) is a "pure" implementation of projection methods and the algorithm of

Preston and Roca (2006) is a "pure" implementation of perturbation techniques.32 There

also seem to be nontrivial di¤erences in terms of the structure of the algorithms. To be able

to explicitly aggregate the individual policy functions, Den Haan and Rendahl (2010) have

to derive additional approximations for the higher-order terms of the individual choices.

No such step is present in the algorithm of Preston and Roca (2006).

But there is also a striking similarity between the algorithms: Both Preston and Roca

(2006) and Den Haan and Rendahl (2010) derive the law of motion for the aggregate vari-

ables directly from the individual policy rules without relying on simulations or numerical

integration techniques.

The algorithm of Den Haan and Rendahl (2010) does not take a stand on how to solve

for the individual policy rules and these could, in principle, be solved for using pertur-

bation techniques. To understand the connection between the two algorithms, consider

the following implementation of the explicit aggregation algorithm. First, suppose the

solution to the individual policy rule, k0 = g(s), is obtained using perturbation techniques

taking the aggregate policy rule as given. If nth-order perturbation is used, then one has

to solve simultaneously for the higher-order policy rules, (k0)j = gj(s) for 1 < j � n. In

perturbation software one would simply add k0j = (k0)j as additional equations and the

kj variables would appear as additional variables. This would result in a solution for the

k0j variables as a function of s, that is gj(s). When the aggregate policy rule is given,

then this is typically a straightforward simple implementation of perturbation techniques

32 In contrast, the other algorithms combine elements of both. Moreover, the other algorithms explicitly
approximate additional aspects such as the cross-sectional distribution and/or add simulation features.
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and could be solved using standard software such as Dynare. Second, the solution for the

aggregate policy rule is obtained by explicitly aggregating policy rules for k0 and (k0)j ;

j > 1. Finally, one would iterate until convergence is achieved. In the appendix, we work

out an example to show that the solution obtained with explicit aggregation is in this case

identical to the one obtained with the algorithm of Preston and Roca (2006).

The explicit aggregation algorithm of Den Haan and Rendahl (2010) can, thus, be

viewed as a general procedure that boils down to the algorithm of Preston and Roca (2006)

if the individual policy rules are solved for using perturbation techniques. Moreover, if

the individual policy rules are indeed solved with perturbation techniques, then� as was

outlined above� the explicit aggregation algorithm suggests a simple way to solve the

model using standard perturbation software such as Dynare.

3.2.2 Perturbation around the steady state cross-sectional distribution

The procedure of Preston and Roca (2006) perturbs around the point where there is neither

aggregate nor idiosyncratic uncertainty. The idea of the procedure in Reiter (2009) is to

take a perturbation around the model solution with no aggregate uncertainty.33 This

solution consists of a cross-sectional distribution for income and capital levels that is not

time varying. We describe the algorithm as a general perturbation problem and in doing

so deviate somewhat from the description in Reiter (2009), but the underlying idea is the

same.

Consider a numerical solution to the model of Section 2

ki;t+1 = Pn(ei;t; ki;t; at;Mt;�k) (33)

where �k is a vector with the coe¢ cients of the numerical solution for the capital policy

function. Pn(�;�k) is an approximating (but �xed) functional form, say an nth-order

polynomial. Let the law of motion for Mt be given by

Mt+1 = ��k(at+1; at;Mt): (34)

33This algorithm is closely related to the algorithm used in Campbell (1998). This algorithm approx-
imates the information of the cross-sectional distribution with a �nite set of elements and linearizes the
resulting set of equations. See the computational appendix of Campbell (1998) for more details.
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The subscript �k makes clear that this law of motion depends on the solution of the

individual policy function. That is, a di¤erent individual policy rule will imply a di¤erent

law of motion for the cross-sectional distribution. It is assumed that Mt is more than

a limited set of moments, but pins down� possibly with additional assumptions� the

complete cross-sectional distribution. For example, Mt could be the values of a histogram

de�ned on a �ne grid.34 This assumption implies that� conditional on the individual

policy function� the mapping ��k is known, although implementing it may require some

numerical procedures like quadrature integration. In other words, given the choice to

approximate the savings function with Pn(�;�k) and given the choice to characterize the

cross-sectional distribution in a particular way, the only unknown is �k. As soon as �k

is known, then all variables, including Mt+1, can be calculated for a given set of initial

values and realizations of the shock.

The individual policy function in Equation (33) can be written without the aggregate

state variables, but with time-varying coe¢ cients. That is,

ki;t+1 = Pn(ei;t; ki;t;�k;t) (35)

with

�k;t = �k(at;Mt): (36)

Let S = [a;M ], let the dimension of �k;t be given by n�k , and let [~e; ~k]
0 be an n�k�1 vector

with nodes for the employment status and capital levels.35 Evaluated at the nodes for the

individual state variables, [~e; ~k], the �rst-order conditions of the agent can be written as

follows:36

1

((1� �) + r(S)) ~kj+w(S)~ej�l � Pn(~ej ; ~kj ;�k(S))
= (37)

�E

"
r(S0) + 1� �

((1� �) + r(S0))Pn(~ej ; ~kj ;�k(S)) + w(S
0)e0�l � Pn(e0; Pn(~ej ; ~kj ;�k(S));�k(S0))

#
34Mt could be a set of moments, but then it has to be accompanied by a functional form assumption so

that the cross-sectional density is pinned down as discussed in Section 6.3.
35That is, we consider here the case where there are exactly enough grid points to determine the elements

of �k.
36For simplicity, we assume that unemployment bene�ts are zero and there is no binding constraint on

capital.
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In equilibrium, the endogenous part of S0, i.e., M 0, is determined by

M 0 = ��k(a
0; a;M); (38)

where, as mentioned above, ��k(�) is� conditional on knowing �k(�)� a known function.

Suppose that a is constant and that M 0 = M characterizes the corresponding cross-

sectional distribution. Evaluated at these constant values for a and M , Equation (37) is

then a standard set of n�k equations to solve for the n�k (constant) elements of �k(S).

But to understand the procedure considered here, it is important to think of Equation

(37), with M 0 determined by Equation (38), as a system that de�nes the vector-valued

function �k(a;M).

It is important to understand what is �xed and what we are solving for in this sys-

tem. First, Pn(�;�k) has a known functional form, namely the one chosen as a numerical

approximation. In the example considered in Section 2, the stochastic variables e0 and a0

have discrete support, so there is an analytical expression for the conditional expectation

in Equation (37). If this is not the case, then a numerical integration procedure has to

be used. But for every quadrature procedure chosen, Equation (37) represents a �xed set

of equations. The same is true for Equation (38). It may be possible that M 0 is only

implicitly de�ned by a set of equations. This does not matter. Essential is that there is a

�xed set of equations that in principle determines M 0.

Thus, Equation (37), with M 0 determined by Equation (38), is a system in which

the coe¢ cients of the approximating individual policy function, �k;t, are the variables.

That is, instead of consumption and capital being variables, the coe¢ cients of the policy

function have become the variables. The idea is now to solve for these functions using the

perturbation approach. That is, we write �k(S) as h�k(a;M ;�a) and its Taylor expansion

around the steady state as

h�k(a;M ;�a) =

h�k(a;M ; 0) + h�k;a(a� a) + h�k;M (M �M)

+h�k;�a�a + h�k;aa(a� a)2=2

+h�k;MM (M �M)2=2 + h�k;�a�a (�a)
2 =2

+ second-order cross products

+ higher-order terms

: (39)
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As in standard perturbation procedures, we can �nd the coe¢ cients of the Taylor expansion

by taking successive derivatives of Equation (37).

This procedure assumes that M is more than a very limited set of moments such as

the mean capital stock. The elements of M should pin down the complete cross-sectional

distribution. One possibility would be to letM be the set of values of the CDF at a very �ne

grid. The value of n�k is then very large and one has to �nd the policy function for many

variables.37 This could be especially problematic if higher-order perturbation solutions are

considered or if Pn(�) is a nonlinear function ofM . In this case it may be better to impose

some structure on the functional form of the cross-sectional distribution, so that the cross-

sectional distribution is fully determined by a smaller set of coe¢ cients. In particular, in

Algan, Allais, and Den Haan (2008) it is shown that a sixth-order polynomial (whose

coe¢ cients are pinned down by six moments) describes the cross-sectional distributions

generated by the model described in Section 2 through time well.

4 Models with non-trivial market clearing

As long as the numerical solutions for the model described in Section 2 do not violate the

condition that the rental rate and the wage rate are equal to the corresponding marginal

products, then the solution is consistent with market clearing in all markets. Using these

prices, the �rms demand exactly the amount of capital and labor o¤ered by households.

In many other models, it is not true that markets automatically clear exactly for the

numerical solution. Nevertheless, market clearing is an important property. Consider a

bond economy in which bonds are in zero net supply. Suppose that aggregated across

households, the demand for bonds is close to, but not exactly, zero at each point in the

state space. It is very unlikely that these small deviations from market clearing will average

out as an economy is simulated at a long horizon. Instead, the total amounts of bonds

held in the economy is likely to move further and further away from its equilibrium value,

and it is not clear how to interpret such an economy given that the solution is based on

the economy being in equilibrium.

37This could easily be 1,000 coe¢ cients/variables or more.
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To understand why market clearing is not automatically imposed exactly when nu-

merically solving a model, consider adding one-period zero-coupon bonds to the economy

developed in Section 2 and let the bond price be equal to qt. One possibility would be to

specify a law of motion for the bond price as a function of the aggregate state variables,

that is, qt = q(St), and to solve for this law of motion. When simulating the economy, the

bond price cannot adjust to ensure market clearing. Of course, a good numerical solution

will be such that aggregate demand is close to zero, but� as pointed above� we would

need exact market clearing to prevent errors from accumulating.38

There are several ways to impose market clearing. One possibility would be to solve

the individual problem using the approximation for q(St) to determine next period�s prices

only and to treat the current-period price as a state variable for the individual problem.

The individual policy functions are then a function of the bond price and in a simulation

the price can be chosen such that the aggregate demand is equal to zero.

Instead of solving for the individual demand for bonds, b0(si;t), Den Haan and Rendahl

(2010) propose to solve for the individual demand for bonds plus the bond price, that is,

d(si;t) � b0(si;t) + q(St). The advantage of this approach is that the bond price does not

have to be added to the set of state variables. Since aggregate demand is equal to zero

in equilibrium, aggregation of these individual choices across individuals gives the bond

price. That is,

q(St) =

Z
d(si;t)di: (40)

If b0(si;t) = d(si;t) � q(St) is used to determine the individual demand for bonds, then

markets clear by construction.

5 Approximate aggregation

Krusell and Smith (2006) point out that many models with heterogeneous agents and

aggregate risk have the desirable property that the mean values of the cross-sectional

distributions are su¢ cient statistics to predict next period�s prices. They also point out

38See Den Haan (1997) and Krusell and Smith (1997).
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that this property is unlikely to be true for all models to be considered in the future.39

Given that approximate aggregation relies on a limited amount of variation across agents�

marginal propensities to save� a quite unrealistic property� this seems a safe prediction.

It is important to understand what approximate aggregation means and in particular

what it does not mean. Approximate aggregation does not imply that the aggregate vari-

ables can be approximately described by a representative agent model in which the agent

faces sensible preferences, and it de�nitely does not imply that the aggregate variables

can be approximately described by a representative agent model in which the preferences

of the representative agent are identical to the preferences of the individual agents in the

model with heterogeneous agents.40

Approximate aggregation does also not imply that there is perfect insurance and a

perfect correlation of individual and aggregate consumption. In fact, even if agents start

out with identical wealth levels, then the model of Section 2 generates a substantial amount

of cross-sectional dispersion in individual consumption levels.

6 Simulation with a continuum of agents

In this section, we discuss di¤erent procedures to simulate an economy with a contin-

uum of heterogeneous agents taking as given numerical solutions for the individual policy

rules. The most common procedure approximates the continuum with a large but �nite

number of agents and uses a random number generator to draw both the aggregate and

the idiosyncratic shocks. With a �nite number of agents, there will be cross-sectional

sampling variation in the simulated cross-sectional data, while� conditional on the aggre-

gate shock� there should be none if the model has a continuum of agents. Even when a

large total number of agents is used, then some subgroups may still have a low number

of agents and their cross-sectional characteristics is measured with substantial sampling

noise. For example, Algan, Allais, and Den Haan (2008) document that moments of the

39One notable model in which approximate aggregation does not hold is the OLG model of Krueger and
Kubler (2004).
40The latter property may be true in some models. In fact, Krusell and Smith (2006) point out that the

latter property is true for the simplest version of the model in Krusell and Smith (1998), but that it is not
true for the version of their model with stochastic discount rates.
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capital holdings of the unemployed of the model described in Section 2 are subject to

substantial sampling variation and that some properties of the true of law motion are not

noticeable, even if the total number of agents is as high as 100,000.

This is documented in Figures 1, 2, and 3. Figure 1 plots the per capita capital stock

of the unemployed when the total number of agents in the panel is equal to 10,000. The

�gure clearly documents the sampling uncertainty. Figure 2 zooms in on a subsample

and adds the simulated path when there are 100,000 agents in the economy. Even with

100,000 agents in the economy there is still noticeable sampling uncertainty. Of course,

the number of unemployed agents is substantially less than the total number of agents in

the economy.

[ FIGURES 1, 2, & 3 AROUND HERE]

Figure 3 plots the fraction of unemployed agents at the constraint. The sampling

uncertainty in the time paths simulated with a �nite number of agents is again striking,

even when there are a total of 100,000 agents in the economy. In fact, the sampling

uncertainty is so large that an interesting property of the model is completely dominated

by sampling uncertainty. If the economy moves out of a recession into a boom, then

the fraction of unemployed agents at the constraint increases according to the accurate

simulation with a continuum of agents. The reason is that during a recession there is a

higher chance that an unemployed agent was employed in the last period and employed

agents never choose a zero capital stock.

This section discusses three procedures to simulate a time series of the cross-sectional

distribution of a continuum of agents. The �rst two are grid methods that approximate the

cross-sectional density with a histogram. One of these grid methods requires the inverse

of the policy function, while the other does not. The third procedure uses polynomi-

als. It imposes more structure on the functional form, but uses a lot less coe¢ cients to

characterize the distribution.
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6.1 Grid method I: calculation of inverse required41

Consider a �ne grid for the capital stock. This simulation procedure approximates at each

point in time the CDF with a linear spline. This means that in between grid points the

distribution is assumed to be uniform. Point mass at the borrowing constraint means

that the value of the CDF at the �rst node is strictly positive. Calculating the CDF of

the end-of-period capital holdings proceeds as follows. At each node, � (which represents

a value for the end-of-period capital holdings), calculate the value of the beginning�of-

period capital stock, x, that would have led to the value �. That is, x is the inverse of �

according to the individual policy function. The probability that the beginning-of-period

capital stock is less than x is then used to calculate the value of the CDF value at �. Note

that this last step requires the policy function to be monotone.

Information used. The beginning-of-period t distribution of capital holdings is fully

characterized by the following:

� the fraction of unemployed agents with a zero capital stock, pu;0;t;

� the fraction of employed agents with a zero capital stock,42 pe;0;t;

� the distribution of capital holdings of unemployed agents with positive capital hold-

ings, and

� the distribution of capital holdings of employed agents with positive capital holdings.

The goal is to calculate the same information at the beginning of the next period.

Besides these four pieces of information regarding the cross-sectional distribution, one

only needs (i) the realizations of the aggregate shock this period and next period and (ii)

the individual policy function.

41This procedure is proposed by Ríos-Rull (1997), and used in, e.g., Heathcote (2005), and Reiter (2009).
42Employed agents never choose a zero capital stock, but some unemployed agents that chose a zero

capital stock last period are employed in the current period.
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Grid Construct a grid and de�ne the beginning-of-period distribution of capital as fol-

lows:

1. �0 = 0 and �i = �� i, for i = 1; � � � ; I.

2. Let p!;0;t be the fraction of agents with employment status ! with a zero capital

stock at the beginning of period t.

3. For i > 0, let p!;i;t be equal to the mass of agents with a capital stock bigger than

�i�1 and less than or equal to �i. This mass is assumed to be distributed uniformly

between grid points.

4. We have
IX
i=0

pu;i;t = 1;

IX
i=0

pe;i;t = 1:

Denote this beginning-of-period distribution function by P!;t(k):

End-of-period distribution The �rst step is to calculate the end-of-period distribution

of capital. For the unemployed, calculate the level of capital holdings at which the agent

chooses �i. If we denote this capital level by xu;i;t, then it is de�ned by43

k0(0; xu;i;t; St) = �i: (41)

This involves inverting the policy function and is the hardest part of the procedure. At

each grid point, the period t end-of-period values of the cumulative distribution function

for the unemployed, Fu;i;t, is given by

Fu;i;t =

Z xu;i;t

0
dPu;t(k) =

iu;tX
i=0

pu;i;t +
xu;i;t � �iu;t
�1+iu;t � �iu;t

pu;iu;t+1;t; (42)

where iu;t = i(xu;i;t) is the largest value of i such that �i � xu;i;t. The second equality

follows from the assumption that Pu;t is distributed uniformly between grid points.

43This is a non-linear problem (and has to be calculated at many nodes), but it should be a well behaved
problem.
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A similar procedure is used to calculate the period t end-of-period values of the cumu-

lative distribution function for the employed, Fe;i;t. That is,

Fe;i;t =

Z xe;i;t

0
dPe;t(k) =

ie;tX
i=0

pe;i;t +
xe;i;t � �ie;t
�1+ie;t � �ie;t

pe;ie;t+1;t; (43)

where ie;t = i(xe;i;t) is the largest value of i such that �i � xe;i;t.

Next period�s beginning-of-period distribution Let g!t!t+1atat+1 stand for the mass

of agents with employment status ! that have employment status !t+1, conditional on the

values of at and at+1. For each combination of values of at and at+1 we have

gutut+1atat+1 + getut+1atat+1 + gutet+1atat+1 + getet+1atat+1 = 1: (44)

This gives

P!;i;t+1 =
gut!t+1

gut!t+1 + get!t+1
Fu;i;t +

get!t+1
gut!t+1 + get!t+1

Fe;i;t (45)

and

p!;0;t+1 = P!;0;t+1 (46)

p!;i;t+1 = P!;i;t+1 � P!;i�1;t+1 (47)

6.2 Grid method II: no calculation of inverse required44

This method also uses a grid and also approximates the cross-sectional distribution with

a histogram. Now it is assumed, however, that the distribution only has mass at the grid

points. In terms of the information used, the notation, and the speci�cation of the grid,

everything is identical to the �rst procedure.45 An important advantage of this procedure

is that it does not require using the inverse of the policy function and the policy function

does not have to be monotone.
44This procedure is proposed by Young (2010).
45Except that the probability always refers to the probability at a grid point, not to the mass in between

grid points.
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End-of-period distribution. The �rst procedure goes through a grid for the end-of-

period capital holdings and then calculates which beginning-of-period capital values lead

to this or a smaller grid value. The second procedure goes through the same grid values,

but they now represent the beginning-of-period capital holdings. It then calculates the

chosen capital stock and assigns the probability associated with this beginning-of-period

capital stock to the two grid points that enclose the end-of-period capital choice.

Let f!;j;t be the mass of agents with employment status ! that have a capital level

equal to �j at the end of the period. It can be calculated as follows:

f!;j;t =

IX
i=0

p!;i;t�!;j;i;t; (48)

where

�!;j;i;t =

8>>>>>>>>><>>>>>>>>>:

0 if k0(e!; �i; �) � �j�1
k0(e! ;�i;�)��j�1

�j��j�1 if �j�1 < k0(e!; �i; �) < �j
1 if k0(e!; �i; �) = �j
�j+1�k0(e! ;�i;�)

�j+1��j if �j < k0(e!; �i; �) < �j+1
0 if k0(e!; �i; �) � �j+1

(49)

The weights �!;j;i;t allocate the probabilities to the grid points and the magnitude of each

weight is determined by the relative distance of k0(e!; �i; �) to the two grid points that

enclose k0(e!; �i; �).46

Next period�s beginning-of-period distribution Given the end-of-period distribu-

tion, the distribution of next-period�s beginning-of-period capital holdings can be calcu-

lated using Equation (45). This step is identical to the one used for the �rst grid method.

6.3 Simulating using smooth density approximations

Algan, Allais, and Den Haan (2008) propose an alternative solution. Suppose that the

beginning-of-period cross-sectional density is given by a particular density, P (k; �!;1),

where �!;1 contains the coe¢ cients of the density characterizing the density of capital

46The dependence on time comes through the aggregate state variables, which are suppressed here to
economize on notation.
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holdings of agents with employment status ! in period 1. P (k; �u;1) and P (k; �e;1) together

with individual policy rules and the values of at and at+1 are in principle su¢ cient to

determine P (k; �u;2) and P (k; �e;2). Algan, Allais, and Den Haan (2008) propose the

following procedure. Let P (k; �u;1) and P (k; �e;1) be n
th-order polynomials that describe

the distributions in period 1. Below we will be more precise about the particular type of

polynomial used, but this detail is not important to understand the main idea underlying

the procedure.

Main idea. The objective of the procedure is to generate a time series for the two cross-

sectional distributions. Given that we use nth-order polynomials, this means generating

the values of �u;t and �e;t. This is done as follows.

1. Use P (k; �!;1), for ! 2 fu; eg, together with individual policy rules to determine

the �rst n moments of capital holdings at the end of period 1, [cM!;1;1; � � � ;cM!;n;1]:

Standard quadrature methods can be used to calculate these. Using the transition

equations, it is then straightforward to calculate the moments of capital holdings at

the beginning of period 2, [M!;1;2; � � � ;M!;n;2].

2. Given the values of [M!;1;2; � � � ;M!;n;2] �nd the values of �!;2. That is, �nd the

values of the coe¢ cients of the approximating density that ensure that the moments

of the approximating density are equal to the desired set of moments.

3. Iterating on this procedure generates a complete time series.

Implementation. The tricky part of this procedure is to �nd the coe¢ cients that cor-

respond with a set of speci�ed moments, that is, step 2. Algan, Allais, and Den Haan

(2008) make this problem substantially easier by using a particular functional form for

P
�
k; �!;t

�
. In particular, they use

P (k; �!;t) = �!;t;0 exp

0BBB@
�!;t;1 [k �M!;1;t] +

�!;t;2

h
(k �M!;1;t)

2 �M!;2;t

i
+ � � �+

�!;t;n [(k �M!;1;t)
n �M!;n;t]

1CCCA : (50)
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We will now explain what the advantage of this particular functional form is.

Step 2 is a root �nding problem. Its purpose is to �nd the values for �!;t that solve a

set of equations. When the density is constructed in this particular way the coe¢ cients,

except for �!;t;0, can be found with the following minimization routine:

min
�!;t;1;�!;t;2;��� ;�!;t;n

1Z
0

P (k; �!;t)

�!;t;0
dk: (51)

This minimization exercise leads to the right answer, because the �rst-order conditions

correspond exactly to the condition that the �rst n moments of P (k; �!;t) should corre-

spond to the set of speci�ed moments. The coe¢ cient �!;t;0 does not appear in these

equations, but it is determined by the condition that the density integrates to one.

One can always try to �nd the roots of an equation by using a minimization prob-

lem. The advantage of this particular minimization problem is that it has some desirable

characteristics. The Hessian is given by

1Z
0

X (M!;1;t; � � � ;M!;n;t)X (M!;1;t; � � � ;M!;n;t)
0 P (k; �!;t)dk; (52)

where X is an (n� 1) vector and the ith element is given by

(k �M!;1;t) for i = 1 and

(k �M!;1;t)
i �M!;i;t for i > 1:

(53)

The Hessian is positive semi-de�nite since X does not depend on �!;t.
47 Consequently, this

is a convex optimization problem and, thus, avoids the need for good initial conditions.48

6.4 Comparison of simulation methods

Of the three methods, the procedure by Young (2010), i.e., the grid-based method that

does not require calculating an inverse, is the easiest to program. Given the similarity

with the other grid-based method, there does not seem to be a reason to prefer the more

47Note that evaluated at the solution for �!;t, the Hessian is a covariance matrix.
48As an alternative, Algan, Allais, and Den Haan (2008) use standard exponentials to parameterize the

density and an equation solver to �nd the coe¢ cients. This version of the algorithm often got stuck and
had to be restarted with better initial conditions.
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complicated one that does require calculating the inverse. The procedure proposed by

Algan, Allais, and Den Haan (2008) is clearly not as easy to program as the procedure

proposed by Young (2010). Moreover, it relies on smooth approximations of the density.

It has one advantage over both grid-based methods, however, and that is that it uses

substantially less coe¢ cients to parameterize the cross-sectional distribution. For some

applications this is useful. For example, in the solution procedure of Reiter (2009) all the

coe¢ cients of the cross-sectional distributions are variables of a perturbation procedure.

When a grid-based method is used, then typically around 1; 000 grid points are used to

describe the cross-sectional distribution of the model described in Section 2. With so many

variables, it is very di¢ cult to use higher-order perturbation procedures.

The question arises how accurate the procedure of Algan, Allais, and Den Haan (2008)

is, especially when the CDF is discontinuous. Algan, Allais, and Den Haan (2008) docu-

ment that a very accurate simulated series can be obtained for the model of Section 2 by

parameterizing the cross-sectional density with a (smooth) 6th-order polynomial. Since

there are hardly any agents at the constraint in this model, the challenge is not that

high. Algan, Allais, and Den Haan (2010), therefore, consider an example in which there

are many large jumps in the CDF and a 10th-order polynomial is used to approximate

the density. Although this approximation cannot capture the jumps, Algan, Allais, and

Den Haan (2010) document that the implied CDF corresponding to their approximating

density provides a good average �t of the true CDF. More importantly, they show that the

generated time series for characteristics of the distribution such as moments and fraction

of agents at the constraint are accurate.

7 Accuracy

Models with heterogeneous agents and aggregate uncertainty are complex models. As was

pointed out in Section 2, it is not even clear for which class of models a recursive equilibrium

exists for the set of state variables typically used in numerical analysis. This by itself

would imply that careful accuracy tests are required. Another reason is that simulations

play an essential role in several algorithms. Simulations are ine¢ cient numerical tools,
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because sampling uncertainty disappears at a slow rate and because simulated data tend

to cluster. Clustering is bad for function approximation. Chapter 6 in Judd (1998)

shows that uniform convergence of the approximating polynomial to the truth requires

nodes to be su¢ ciently spread out. Uniform convergence is guaranteed with Chebyshev

nodes (under certain regularity conditions). In contrast, uniform is not guaranteed with

equidistant nodes. Note that equidistant nodes are typically much more spread out than

the points generated in a simulation, so uniform convergence is unlikely to be guaranteed

when using simulated data.

Many aspects of the model to check. Given the complexity of this type of model,

there are many aspects that need to be checked for accuracy. In addition to the policy

rules that characterize individual behavior, the policy functions of aggregate variables and

the simulation procedure need to be checked. If the algorithm solves for an approximation

of the cross-sectional distribution, then this needs to be checked as well. Below we will

discuss some formal accuracy tests. It is important to realize, however, that accuracy

tests have limitations. In particular, it has been shown that numerical solutions can fail

accuracy tests and still generate very accurate predictions for most properties generated

with the solution.49 Moreover, as will be shown below, it is also possible that numerical

solutions pass accuracy tests and are not accurate at all.

It is, therefore, important to play around with di¤erent implementations of the algo-

rithm and see whether the results one is interested in do not change. For example, one

should check whether the results are robust to modi�cations such as a di¤erent range for

the grid, a di¤erent order for the approximating function, and a di¤erent choice of the

function to be approximated. Ideally, one would document as well that the results are

robust to using a di¤erent type of algorithm. There are now de�nitely enough algorithms

to choose from.

Conditional on the solution for the aggregate variables, the accuracy of individual

policy can be evaluated using standard accuracy tests such as the maximum Euler equation

49See Den Haan and Marcet (1994).
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error across a large set of grid points.50

Formal tests to check the accuracy of a simulated cross-section do not exist. A rea-

sonable test would consist of increasing the number of nodes for the grid methods or the

order of the approximating density for the non-grid method to see whether the generated

series change. And generating the same set of results with both a grid and a non-grid

method would be a persuasive indication that the generated series are accurate.

To check for accuracy of a parameterized distribution, one can check whether the

parameterized cross-sectional distribution corresponds closely to the cross-sectional distri-

bution observed in a simulated cross-section or one could check whether the approximating

density has the same implications for a set of key characteristics such as the mean and the

variance as those observed in the simulated data.

Problems of the R2 as accuracy test. In most algorithms, the law of motion de-

scribing aggregate variables such as the mean capital stock plays a central role. Checking

for its accuracy should, therefore, be done very carefully. Some authors are clearly aware

of the di¢ culty in assessing accuracy of the aggregate law of motion. Krusell and Smith

(1996, 1998), for example, perform a variety of accuracy tests, try out several di¤erent

alternative approximating functional forms, and perform a careful economic analysis to

explain why their preferred numerical solution, one in which only the mean matters for

aggregate dynamics, is an accurate one. Unfortunately, Krusell and Smith (1998) put

most emphasis on two weak accuracy tests and the subsequent literature has treated these

as su¢ cient statistics to evaluate the accuracy of the aggregate law of motion. In partic-

ular, Krusell and Smith (1998) estimate the aggregate law of motion with least-squares

regression using simulated data. The two accuracy tests are the R2 and the standard error

of the regression, �̂u.

Den Haan (2010a) shows that the R2 and the standard error of the regression are very

weak accuracy tests and gives examples in which numerical solutions with an R2 in excess

of 0.9999 can still be inaccurate. The accuracy of many results in the literature is, thus,

still undocumented. To focus the discussion, suppose that a researcher is interested in

50See Judd (1992).
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assessing the accuracy of the following approximating law of motion

ln(Kapprox
t ) = �1 + �2at + �3 ln(K

approx
t�1 ); (54)

where Kapprox
t is the mean of the cross-sectional distribution of capital and at is an aggre-

gate shock. The standard procedure to calculate �̂u and the R2 consists of the following

steps. First, simulate a panel and for each period calculate the aggregate capital stock.

The panel is generated using only the individual policy rules and should not rely in any

way on the approximating aggregate law of motion. It is the law of motion of this aggre-

gate capital stock that we are interested in. To highlight the key element of the argument

we will refer to this capital stock as Ktruth
t even though it is typically not calculated

without any numerical error.51 The approximation in Equation (54) would be a good

approximation if Kapprox
t follows Ktruth

t closely. Are the R2 and �̂u good measures for

this?

The R2 and �̂u are based on errors de�ned as

ut+1 � ln(Ktruth
t+1 )� ln(K

predicted
t+1 ); (55)

where Kpredicted
t+1 is the capital stock predicted according to the approximation. So far,

everything is �ne. But when calculating the R2 and �̂u, one uses Ktruth
t as the argument

in the approximating law of motion. That is,

ut+1 � ln(Ktruth
t+1 )� ln(K

predicted
t+1 ); (56)

= ln(Ktruth
t+1 )� �1 � �2at � �3 ln(Ktruth

t ): (57)

That is, each period one starts with the true value and see how the approximation performs

starting at the truth. Consider the case when the approximating law of motion would want

to push the observations away from the truth each period. The error terms de�ned these

way underestimate the problem, because the true dgp is used each period to put the

approximating law of motion back on track. This is the most troublesome feature of these

two accuracy measures.
51For example, the number of agents used in a simulation with a �nite number of agents may not be

high enough to eliminate all sampling uncertainty. Alternatively the grid to construct the histogram for
the cumulative distribution function may not be �ne enough.
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But these measures have other problems too. For example, the R2 and �̂u are based on

averages, but accuracy tests typically focus on the maximum error. Moreover, the R2 in-

�ates the measure of �t by scaling the sum of the errors with the variance of the dependent

variable. To see why this matters, suppose that one focuses on ln(Kapprox
t+1 )� ln(Kapprox

t )

instead of ln(Kapprox
t+1 ). The approximating law of motion is rede�ned accordingly as

ln(Kapprox
t+1 )� ln(Kapprox

t ) = �1 + �2at + (�3 � 1) ln(Kapprox
t�1 ): (58)

After Kapprox
t is subtracted from both sides of Equation (54), the approximating law

of motion is of course still the exact same law of motion and there is no reason to pre-

fer Equation (54) over Equation (58). But this bit of trivial algebra does change the

R2 revealing the arbitrary nature of the R2. The R2 changes because the variance of

ln(Kapprox
t+1 ) � ln(Kapprox

t ) is typically much lower than the variance of ln(Kapprox
t+1 ). The

drop in the value of the R2 can be substantial. Den Haan (2010a) gives examples in which

the average R2 is equal to 0.9952 when Equation (54) is used and 0.8411 when Equation

(58) is used.

Examples. The weakness of the existing accuracy tests can be easily documented using

the following example from Den Haan (2010a). Table 1 reports the R2 and some properties

of di¤erent aggregate laws of motion using a sample of 10; 000 observations for the aggre-

gate capital stock, Kt. The series for Ktruth
t are generated using the numerical solution of

Young (2010) for the individual policy rules of the model described in Section 2. The �rst

row corresponds to the �tted law of motion of the regression equation:

ln(Kapprox
t+1 ) = �1 + �2at + �3 ln(K

truth
t ) + ut+1: (59)

This equation has an R2 equal to 0.99999729 and the estimated value for �3 is equal to

0.96404. In the subsequent speci�cations, the value of �3 is changed. The value of �1 is

adjusted to ensure that the mean error term of the regression equation remains equal to

zero. This adjustment of �1 also ensures that the implied mean for the (logarithm of the)

aggregate capital stock remains the same.

As the value of �3 is reduced, the value of the R2 obviously goes down. But the

changes in �3 considered here are such that the R2 remains quite high. In particular, �3
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is lowered until the R2 is equal to 0:9999, 0:999, and 0:99. Despite the high R2 values,

the alternative aggregate laws of motion are very di¤erent laws of motion. This is made

clear by the standard deviation of the aggregate capital stock that is implied by the three

alternative aggregate laws of motion. The standard deviation implied by the original

regression equation is equal to 0.0248, which corresponds very closely to the standard

deviation of the underlying series. But as the value of �3 is changed, the implied standard

deviation plummets. For example, when �3 is equal to 0:9324788 (0:8640985) then the

true value of the standard deviation of the aggregate capital stock (the one implied by

the individual policy rules) is 43% (119%) above the value implied by the approximating

aggregate law of motion, even though the R2 of the approximating laws of motion is equal

to 0:999 (0:99). And when �3 is adjusted so that the R2 is equal to 0:9999, then there is

still a 14% error for the standard deviation of aggregate capital.

More powerful accuracy test. Den Haan (2010a) proposes an alternative accuracy

procedure, which is a much more powerful accuracy test, in the sense of detecting dif-

ferences between the truth and the approximating law of motion. It is also likely to be

more insightful in determining where and why the approximation fails. It consists of the

following steps:

1. Generate a time series for at and choose an initial cross-sectional distribution. For

algorithms that obtain the aggregate law of motion using simulated data, the time

series for at should not be the same draw as the one used to calculate the approxi-

mating law of motion.52

2. Generate a panel data set using only the individual policy function. From the panel

construct a time series for time series for Ktruth
t .53

3. Generate a time series for Kapprox
t using the approximating law of motion given in

52 It is obviously cleaner to use a fresh draw. This would not be very important, however, if long enough
samples are used to estimate the coe¢ cients of the approximating law of motion.
53We remind the reader that Ktruth

t refers to the aggregate capital stock that is based on the individual
policy functions. The superscript "truth" is used, because it is the law of motion of this capital stock
that one is trying to approximate. But the superscript is misleading, because (taking the individual policy
functions as given) this measure is typically not calculated without any numerical error.
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(54). This series is based on the same draw for at and the same initial condition,

i.e., Ktruth
1 , but is not related to Ktruth

t in any other way.

4. De�ne the error term as

ln(Ktruth
t+1 )� ln(K

approx
t+1 ), (60)

where ln(Kapprox
t+1 ) is generated by

ln(Kapprox
t+1 ) = �1 + �2at + �3 ln(K

approx
t ): (61)

Whereas the R2 uses �1+�2at+�3 ln(Ktruth
t ) to predict next period�s capital stock,

this accuracy test uses �1+�2at+�3 ln(K
approx
t ). By using Kapprox

t instead of Ktruth
t

it is, of course, much more di¢ cult to closely track Ktruth
t .

5. Report the maximum error. If the variable is something like the log of capital, then

no scaling is necessary. Otherwise the author should think about appropriate scaling.

6. Plot the two generated series. This is referred to in Den Haan (2010a) as the "essen-

tial accuracy plot". Check in particular whether one series is systematically below

the other and determine in which part of the state space the deviations are biggest.

[FIGURE 4 AROUND HERE]

Figure 4 gives an example of such an "essential accuracy plot". The example is from

Den Haan (2010a).54 The only di¤erence between the true and the approximating law

of motion for aggregate capital is that according to the true law of motion next period�s

aggregate capital depends on this period�s and on last period�s capital, whereas according

to the approximating law of motion next period�s aggregate capital only depends on this

period�s capital stock. The approximating law of motion has a high R2, namely 0.9953.

But Figure 4 makes clear that the approximating law of motion is not accurate at all.

There are enormous gaps between the time series generated by the approximating law of

motion and the true series. The high R2 of the approximating law of motion is only due

to the fact that the true series are used as explanatory series each period.
54Namely, Experiment 1.2.
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Den Haan (2010a) shows that the accuracy test proposed above is just as powerful

as one of the tests considered by Krusell and Smith (1996, 1998), namely the maximum

100-quarter ahead forecast error. The advantage of the "essential accuracy plot" is that

it provides some useful insights. For example, suppose the panel data set is generated

using a �nite number of agents, which means that Ktruth
t � which is used as a proxy for

the true dgp� is actually generated with error. If one would �nd that Ktruth
t �uctuates

around a smooth time path for Kapprox
t , then the deviations are likely to be due to errors

in generating Ktruth
t , not in the approximating law of motion. The essential accuracy plot

would quickly make this clear.

Formal accuracy tests may often provide limited insights into why a particular approx-

imation works or does not work.55 It is, therefore, important not to treat the model as a

black box and take the generated numerical results simply as given. As stressed by Krusell

and Smith (2006), in models with heterogeneous agents, it is particularly important to

understand the relationship between individual policy rules and aggregate laws of motion.

The problem is, of course, that solving the full model can be time consuming. As an

alternative they suggest to �rst analyze a two-period version of the model in which one

can vary the cross-sectional distribution exogenously. After studying this environment one

can solve the full model.

8 Comparison

Den Haan (2010b) compares the properties of the solutions to the model of Section 2 using

most of the algorithms discussed in this chapter. The perturbation algorithms are not con-

sidered, because the model has an inequality constraint, which would be di¢ cult to handle

for the perturbation procedures because of the discontinuities.56 Here we summarize the

main �ndings.

55Some accuracy tests are directly linked to properties of interest, but this is unusual. Santos (2000)
relates the Euler equation residual to errors in the policy function. Reiter (2001) and Santos and Peralta-
Alva (2005) construct a relationship between the size of the errors found and an upper bound on the error
for objects economists could be interested in such as the obtained utility level or moments.
56Kim, Kollmann, and Kim (2010) implement the inequality constraint with a penalty function, but

they are not very successful in doing so.
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The solutions turn out to di¤er substantially in several dimensions. This is surprising

given the relatively simple nature of the model. Di¤erences are most noticeable for the

individual choices. Not only do the generated series di¤er during exceptional periods, such

as particularly bad times, but there are even nontrivial di¤erences between the implied

�rst moments.

Several accuracy checks are performed. Figure 5 plots the essential accuracy plot for

six algorithms. The �gure compares the data generated by the aggregate law of motion

with the corresponding time series from the simulated panel.57 For BInduc, the algorithm

of Reiter (2010), for Param, the algorithm of Algan, Allais, and Den Haan (2010), for

Xpa, the algorithm of Den Haan and Rendahl (2010), and for Penal, the algorithm of

Kim, Kollmann, and Kim (2010), the results for the aggregate capital stocks conditional

on the employment status are reported. For KS-num, the algorithm of Young (2010), and

for KS-sim, the algorithm of Maliar, Maliar, and Valli (2010), only the results for the

aggregate capital stocks are reported. The reason is that BInduc, KS-num, and KS-sim

only generate a law of motion for aggregate capital. Finding an accurate solution for the

law of motion of the average capital stock across all agents is obviously easier, than doing

the same for the average capital stock of the unemployed, but should be comparable to

obtaining the law of motion for the average capital stock of the employed.

[FIGURE 5 AROUND HERE. Note that �gure 5 consists of six panels

submitted in two �les]

Regarding the aggregate law of motion, the best performance is by KS-num and KS-

sim. Both algorithms obtain the coe¢ cients of the law of motion for the aggregate capital

stock by using simulated data in a least-squares regression. KS-num simulates using a

continuum of agents and KS-sim with a large �nite number of agents. The graph clearly

57The �gure plots the series in that part of the sample where BInduc obtains its largest errors (excluding
the initial period) for the average capital stocks conditional on employment status. BInduc does not
automatically generate a law of motion for the average capital stocks conditional on employment status,
but it is possible to do so. The errors for the conditional means are substantially larger than the errors
for the per capita capital stock. The proxy distribution in BInduc takes the role of the aggregate law
of motion in the other algorithms. The proxy distribution does not take care well of how capital is split
between employed and unemployed, but does predict aggregate capital well.
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documents the excellent �t for KS-num and KS-sim. The errors of Param and Xpa are

small, but the aggregate law of motion generates data that are consistently above the

simulated series in this part of the sample. The aggregate laws of motion of BInduc do

well during a boom, but the aggregate law of motion for the average capital stock of the

unemployed clearly does poorly during a downturn. For Penal the aggregate law of motion

consistently lies below the one implied by the simulation, which makes sense given that

this law of motion is simply the capital choice of a representative agent that does not face

idiosyncratic risk and incomplete markets.

Overall, the algorithm of Reiter (2010) performs best in terms of accuracy. It clearly

performs the best in terms of the accuracy of the individual policy rules and it performs

close to the best in terms of the accuracy of the aggregate law of motion.58 The per-

formance of the algorithm of Den Haan and Rendahl (2010) is close to the performance

of Reiter (2010) in terms of accuracy. Computing times are reported in Table 2, which

reports the time it takes for the di¤erent algorithms to solve the model when 
 is equal

to 1.1, taking as initial conditions the solution of the model when 
 is equal to 1.59

Interestingly, the algorithms of Den Haan and Rendahl (2010) and Reiter (2010), that

do best in terms of accuracy, are also the fastest, with the algorithm of Den Haan and

Rendahl (2010) roughly seven times as fast as the algorithm of Reiter (2010).60 This dis-

cussion ignores programming complexity. The Krusell-Smith algorithm and the algorithm

of Den Haan and Rendahl (2010) are very easy to program. The algorithms of Reiter

(2010) and Algan, Allais, and Den Haan (2008) are much more involved.

The fact that the di¤erent algorithms generate results that are not that similar for

such a relatively simple model, should motivate us to be careful in numerically solving

these models. There are several useful lessons that can be learned from this comparison

project. Those are the following:

� It is essential to have an algorithm for the individual problem that does well in

58The Krusell-Smith algorithm achieved the highest accuracy for the aggregate law of motion.
59The programs were run on a Dell Latitude D410 with an Intel Pentium M processor (2.00 GHz, 798

Mhz FSB).
60The algorithm of Kim, Kollmann, and Kim (2010) is even faster, but this algorithm does not solve the

actual model speci�ed with heterogeneous agents,
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terms of accuracy as well as speed. Standard lessons from the numerical literature

should not be ignored. For example, time iteration is typically faster and more

reliable than �xed-point iteration.61 Also, the lower and upper bounds of the grid

should be chosen with care in order not to miss or waste grid points. Den Haan

(2010b) reports that algorithms that use the largest range for individual capital also

have lower accuracy. Finally, the method of endogenous grid points, proposed in

Carroll (2006), is recommended. It is not clear whether this leads to a more accurate

solution, but it is de�nitely faster and makes it, for example, easy to implement time

iteration.

� It is important to realize that the properties of an algorithm found when solving

for individual policy rules in the model without aggregate uncertainty, i.e., for a

�xed aggregate capital stock level, do not carry over to the model with aggregate

uncertainty, even when taking as given the law of motion for aggregate capital. In

particular, Den Haan (2010b) �nds that it is more di¢ cult to get accurate individual

policy rules in the model with aggregate uncertainty than in the model without even

when taking the aggregate law of motion as given.

� In solving models with a representative agent, it is typically possible to achieve

arbitrary accuracy. None of the algorithms considered in the comparison project

do extremely well in terms of all the accuracy tests. Especially the outcomes of

the accuracy test for the aggregate policy rule are somewhat disappointing.62 The

maximum errors in a simulation of 10,000 observations vary across algorithms from

0.156% to 1.059%. Ideally, they should be at least a factor 10 smaller then the

smallest numbers found here.

� Given that it is not (yet) easy to generate numerical solutions with arbitrary ac-

curacy, it is important to perform accuracy tests. The role of a good accuracy

procedure consists not only of providing a measurement of the accuracy of the solu-

tion, but also of making clear which aspect of the solution is inaccurate under what
61See Judd (1998) for a discussion on the di¤erences between these two procedures.
62A much more demanding accuracy test than the R2 is used.
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conditions and whether the inaccuracies found matter.

9 Other types of heterogeneity

This chapter has focused on models with a continuum of agents. From a practical point

of view, it does not matter whether one has a continuum of agents or say several million.

Using a continuum is mathematically more elegant, however, because with a continuum

any cross-sectional variation is only due to aggregate uncertainty.

There are also models in which there are enough heterogeneous agents to make the

problem numerically challenging, but not enough to approximate them with a continuum.

An example would be a multi-country model. Algorithms to solve these types of models

are discussed in a special issue of the Journal of Economic Dynamics and Control.63 There

are two key di¤erences between models with a continuum of agents and models with a

�nite number of heterogeneous agents.

The �rst di¤erence is that idiosyncratic risk does not average out in models with a

�nite number of agents. Typically this means that one faces integrals over many random

variables. The second di¤erence is that the state consists of a �nite, but large number of

elements in models with a �nite number of agents. It is an open question at what point

the number of elements becomes so large that it becomes worthwhile to approximate the

distribution with summary statistics instead of including the complete set.

The problem of having a high-dimensional state space and the problem of having

expectations over many random variables are related. Both problems require thinking

carefully about how to choose relevant points in large spaces. We refer the reader to

Kollmann, Kim, and Kim (2010), Malin, Krueger, and Kubler (2010), Maliar, Maliar, and

Judd (2010), and Pichler (2010) for discussions on recent techniques to deal with these

problems.

63See Den Haan, Judd, and Juillard (2010b) for more information.
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10 Concluding comments

There are many macroeconomic models with heterogeneous agents and aggregate uncer-

tainty. Often, the computational complexity is reduced by making particular ad hoc

assumptions. For example, in models with a �nancial accelerator, as in Carlstrom and

Fuerst (1997) or Bernanke, Gertler, and Gilchrist (1999), the assumption is made that the

production function is linear in the sector in which agents face �nancial frictions and that

there are no �nancial frictions in the sector in which the production function is not linear.

This makes it possible to aggregate and model a representative �rm, even though in the

underlying model �rms face idiosyncratic shocks and a fraction of �rms goes bankrupt

each period. Similarly, aggregation is possible in standard New-Keynesian models with

Calvo pricing if one restricts attention to the linearized solution.

The question arises how sensible these assumptions are and whether the predictions

of the models in which these restrictive assumption are not made are di¤erent. With the

algorithms that have been developed, it has become possible to check these assumptions

and to have models with �nancial frictions and sticky prices in more general environments.

We end this chapter expressing a concern about current practice in the quantitative

analysis of dynamic stochastic models. It is a deplorable fact that results based on nu-

merical solutions are often not properly checked for accuracy. Properties of the algorithm

established in simpler environments are simply believed to carry over to more complex en-

vironments without a proper discussion. If this practice continues, then it is only a matter

of time that the quantitative economics literature will face its own crisis, instead of being

able to provide useful answers to pressing problems like the current �nancial crisis.

A Explicit aggregation and perturbation techniques

In this section, we work out an example to document that the explicit aggregation al-

gorithm of Den Haan and Rendahl (2010) boils down to the same algorithm as the one

proposed by Preston and Roca (2006) if the individual problem is solved using perturba-

tion techniques. We consider the following simple example in which the model equations
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are given by


(k; k0; k00;K;K 0) = 0 (62)

and

K 0 =

Z
k(i)di: (63)

The solutions we seek can be written as

k0 = g(k;K;M) (64)

and

K 0 = G(K;M); (65)

where M consists of a �nite set of higher-order uncentered moments.

First-order perturbation. When �rst-order perturbation is used, then the solutions

are of the form k0 = g(k;K) and K 0 = G(K). Using this, the model equations can be

written as


(k; g(k;K); g(g(k;K); G(K));K;G(K)) = 0 (66)

The �rst-order Taylor expansion of the solution is given by

k0 = �k + gk(k � �k) + gK(K � �k): (67)

Di¤erentiating Equation (66) with respect to k and K and evaluating the expressions at

the steady state gives the following two equations:


k +
k0gk +
k00g
2
k = 0 (68)

and


k0gK +
k00(gkgK + gKGK) + 
K +
K0GK = 0: (69)

There are three unknowns in these equations, namely gk, gK , and GK . If the explicit

aggregation algorithm of Den Haan and Rendahl (2010) is used, then the policy rule for

K 0 is given by

K 0 = �k + (gk + gK)(K � �k): (70)
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That is,

GK = gk + gK : (71)

Equations (68), (69), and (71) can then be used to solve for the three unknowns.

The algorithm of Preston and Roca (2006) would also use Equations (68) and (69). It

would solve for GK from the aggregation equation:

G(K) =

Z
g(k(i);K)di: (72)

Di¤erentiating and evaluating at the steady state gives

GKdK =

Z
gkdk(i) +

Z
gKdKdi (73)

or

GKdK = gkdK + gKdK (74)

or

GK = gk + gK ; (75)

which is equivalent to Equation (71), the equation obtained using the explicit aggregation

algorithm of Den Haan and Rendahl (2010).

Second-order perturbation. The solutions are now of the form k0 = g(k;K; V ); K 0 =

G(K;V ), V 0 = H(K;V ) and the model equations can be written as


(k; g(k;K; V ); g(g(k;K; V ); G(K;V );H(K;V ));K;G(K;V )) = 0 (76)

The second-order Taylor expansion of the solution is given by

k0 =
�k + gk(k � �k) + gK(K � �k) + gV (V � �V )

+gkK(k � �k)(K � �k) + 0:5(gkk(k � �k)2 + gKK(K � �k)2
: (77)

Note that V is a second-order term, and is, thus, not combined with any other terms.

When using the explicit aggregation algorithm of Den Haan and Rendahl (2010), we also

need a second-order solution for (k0)2, which we write as

�
k0
�2
=

�k2 + hk(k � �k) + hK(K � �k) + hV (V � �V )

+hkK(k � �k)(K � �k) + 0:5(hkk(k � �k)2 + hKK(K � �k)2)
: (78)
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The additional equation for the additional variable, h0, is given by

h0 =
�
k0
�2
: (79)

Explicitly aggregating the two policy rules give the laws of motion for the two aggregate

state variables, K and V . Thus,

K 0 =
�k + (gk + gK)(K � �k) + (0:5gkk + gV ) (V � �V )

+(gkK + 0:5gKK)(K � �K)2
(80)

and

V 0 =
�k + (hk + hK)(K � �k) + (0:5hkk + hV ) (V � �V )

+(hkK + 0:5hKK)(K � �K)2:
(81)

That is, using explicit aggregation gives

GK = gk + gK

GV = 0:5gkk + gV

0:5GKK = gkK + 0:5gKK

(82)

and
HK = hk + hK

HV = 0:5hkk + hV

0:5HKK = hkK + 0:5hKK

(83)

The question arises whether the procedure of Preston and Roca (2006) gives the same

system of equations. The law of motion for K 0 satis�es

K 0 = G(K;V ) =

Z
g(k(i);K; V )di: (84)

By taking the second-order Taylor expansion around the steady state on both sides we get

GK(K � �k) +GV (V � �V ) + 0:5GKK(K � �k)2

=�R
(gk(k(i);K; V ) + gK(k(i);K; V ))d(i)

�
ss
(K � �k)+�R

gV (k(i);K; V )di+ 0:5
R
gkk(k(i);K; V )di

�
ss
(V � �V )

+
�R
gkK(k(i);K; V )di+ 0:5

R
gKK(k(i);K; V )di

�
ss
(K � �k)2

(85)
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where [�]ss indicates that the expression is evaluated at steady state values. This gives

indeed the same values for GK , GV , and GKK as those implied by explicit aggregation.

The law of motion for V 0 satis�es

V 0 = H(K;V ) =

Z
(g(k(i);K; V ))2 di: (86)

By taking the second-order Taylor expansion around the steady state on both sides we get

HK(K � �k) +HV (V � �V ) + 0:5HKK(K � �k)2

=�R
2g(k(i);K; V )(gk(k(i);K; V ) + gK(k(i);K; V ))d(i)

�
ss
(K � �k)

+

24 2g(k(i);K; V )
R
gV (k(i);K; V )di

+0:5
R
2g(k(i);K; V )gkk(k(i);K; V )di

35
ss

(V � �V )

+

24 R
2g(k(i);K; V )gkK(k(i);K; V )di

+0:5
R
2g(k(i);K; V )gKK(k(i);K; V )di

35
ss

(K � �k)2

(87)

This leads to the following set of solutions for the coe¢ cients of H(�).

HK = 2�k(gk + gK)

HV = 2�k(gV + 0:5gkk)

0:5HKK = 2�k(gkK + 0:5gKK)

: (88)

The �nal question is whether these second-order perturbation solutions for H(�) are equal

to the solutions one gets with explicit aggregation, as given in Equation (83). The answer

is yes. Using that h0 = (k0)2 or h(k;K; V ) = (g (k;K; V ))2 we get that

hk = 2�kgk,

hK = 2�kgK , and

hV = 2�kgV .

(89)

Using these expressions, we see that the explicit aggregation algorithm of Den Haan and

Rendahl (2010) gives the exact same policy rules as the procedure of Preston and Roca

(2006), if the individual policy rules are solved using perturbation.
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Table 1: Meaninglessness of the R2

implied properties
equation R2 b�u mean stand. dev.
�3 = 0:96404 (�tted regression) 0:99999729 4:1� 10�5 3:6723 0:0248
�3 = 0:954187 0:99990000 2:5� 10�4 3:6723 0:0217
�3 = 0:9324788 0:99900000 7:9� 10�4 3:6723 0:0174
�3 = 0:8640985 0:99000000 2:5� 10�3 3:6723 0:0113
Notes: The �rst row corresponds to the �tted regression equation. The subsequent rows
are based on aggregate laws of motion in which the value of �3 is changed until the indicated level
of the R2 is obtained. �1 is adjusted to keep the �tted mean capital stock equal.
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Table 2: Computation times

algorithm programming language time authors
BInduc Matlab 47 minutes Michael Reiter

KS-num Fortran 324 minutes
Lilia Maliar, Sergui Maliar,

Fernando Valli
KS-sim Matlab 310 minutes Eric Young

Param Fortran 2739 minutes
Yann Algan, Olivier Allais,

Wouter den Haan
Xpa Matlab 7 minutes Wouter den Haan, Pontus Rendahl

Penal Matlab < 1 second!
Henry Kim, Robert Kollmann,

Jinill Kim
Notes: This table reports the time it takes to solve the model when 
 = 1:1, starting at
the solution for 
 = 1.
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Figure 1: Simulated per capita capital of the unemployment

Notes: This graph plots the simulated aggregate capital stock of the unemployed using
either a �nite number (10,000) or a continuum of agents.
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Figure 2: Simulated per capita capital of the unemployment

Notes: This graph plots the simulated aggregate capital stock of the unemployed using
either a �nite number (10,000) or a continuum of agents. It displays a subset of the
observations shown in Figure 1.
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Figure 3: Simulated fraction of contrained agents

Notes: This graph plots the simulated fraction of unemployed agent at the borrowing
constraint using either a �nite number (10,000) or a continuum of agents.
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Figure 4: High R2 and inaccurate law of motion
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Notes: This graph plots the true aggregate capital stock and the one predicted by the ap-
proximate aggregate law of motion when the input of the approximation is the lagged value
generated by the approximation not the true lagged value (as is done when calculating
the R2.
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Figure 5: Accuracy aggregate law of motion for di¤erent algorithms
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Notes: This graph plots the indicated mean capital stock according to the aggregate law of
motion (line with open circles) and the value that is obtained if the individual policy rules
are used to simulate a cross-sectional distribution (solid line). Note that the �gures for
KS-num and KS-sim do plot the two lines, but that they are basically indistinguishable.
BInduc: the algorithm of Reiter (2010); Param: the algorithm of Algan, Allais, and
Den Haan (2010); Xpa: the algorithm of Den Haan and Rendahl (2010); Penal, the
algorithm of Kim, Kollmann, and Kim (2010); KS-num: the algorithm of Young (2010);
KS-sim: the algorithm of Maliar, Maliar, and Valli (2010).




