
This is page i
Printer: Opaque this

1
Function Approximation

1.1 Introduction

In this chapter we discuss approximating functional forms. Both in econo-
metric and in numerical problems, the need for an approximating function
often arises. One possibility is that one has a finite set of data points and
wants to determine the underlying functional form. For example, suppose
one knows that next period’s value of the interest rate, rt+1, is some func-
tion of the current interest rate, but one doesn’t know what the functional
form is. That is, one has the empirical relationship

rt+1 = f(rt) + εt+1 (1.1)

and the question is then whether with enough data one can discover the
functional form of f .
The need for an approximating functional form also arises if one could

in principle calculate the function value for any given set of arguments but
that it is very expensive to do so. For example, the function value may be
the outcome of many complex calculations and it may take a lot of comput-
ing time to calculate one function value. With an approximating functional
form one could obtain (approximate) function values much quicker. Again
the goal would be to come up with an approximating functional form us-
ing a finite set of data points. There is a big difference with the problem
that the econometrician faces, however, because the econometrician can-
not choose his data points. We will see in this section that the freedom to



ii 1. Function Approximation

choose the location of the arguments makes it much easier to come up with
accurate approximations.
Finally, the theory on function approximation is very useful if one is

trying to solve for a function that is (implicitly) defined by a system of
functional equations.

1.2 Polynomial approximations

Most of this chapter will be devoted to polynomial approximations, i.e.,

yt = a0 + a1x+ a2x
2 + · · ·+ anxn, (1.2)

where x is a scalar. Later in this chapter will we discuss functions with
multiple arguments. We will see that there are actual many different types
of polynomials by choosing different basis functions, Tj(x). That is, a more
general way to write polynomials is

yt = a0 + a1T1(x) + a2T2(x) + · · ·+ anTn(x). (1.3)

For example, Tj(x) could be (ln(x))j . Moreover, one can take transforma-
tions. For example, if one knows that the function value is always positive,
one could use this information by letting

yt = exp(a0 + a1T1(x) + a2T2(x) + · · ·+ anTn(x)). (1.4)

1.2.1 How good are polynomial approximations

Weierstrass theorem tells us that a continuous real-valued function defined
on a bounded interval on the real line can be approximated arbitrarily well
using the sup norm if the order of the polynomial goes to infinity. Even
functions that have a discontinuity can be approximated arbitrarily well if
one uses another norm then the sup norm.

1.2.2 How to find polynomial approximations

In this subsection, we discuss four different ways to come up with a polyno-
mial approximation. The procedures differ in whether they use only local
information (Taylor expansion) and whether they use information about
derivatives or not.

Taylor expansion

If one has the function value and n derivatives at one point, x0, then one
can calculate a polynomial approximation using the Taylor expansion.

f(x) ≈ f(x0)+ (x− x0)
∂f(x)

∂x

∣∣∣∣
x=x0

+ · · ·+ (x− x0)
n

n!

∂nf(x)

∂xn

∣∣∣∣
x=x0

(1.5)

Note that the right-hand side is indeed a polynomial.



1.2 Polynomial approximations iii

Projection

More common though is that one has n+1 function values, f0, f1, · · · , fn,
at n + 1 arguments, x0, x1, · · · , xn. There are two procedures to find the
coeffi cients of the polynomial. The first is to run a regression. If you do it
right you get an R2 equal to 1.

Lagrange Interpolation

The approximating polynomial is also given by

f(x) ≈ f0L0(x) + · · ·+ fnLn(x), (1.6)

where

Li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

. (1.7)

Li(x) is a polynomial so the right-hand side of 1.6 is a polynomial as well.
So we only have to show that this polynomial gives an exact fit at the n+1
points. This is easy if one realizes that

Li(x) =

{
1 if x = xi
0 if x ∈ {x0, · · ·xn} \{xi}

. (1.8)

Consequently, one gets
f(xi) = fi (1.9)

It is unlikely that you will actually find it useful to write the polynomial
like this, but we will see that this way of writing a polynomial is useful for
numerical integration.

Hermite Interpolation

The last two procedures only used function values at a set of grid points.
Now suppose that in addition to n+1 function values one also has numerical
values for the derivatives at the nodes, i.e., f ′0, f

′
1,· · · , f ′n. With these 2(n+1)

pieces of information one can calculate a (2n+ 1)th order polynomial.

f(x) ≈
n∑
i=0

fiHi(x) +

n∑
i=0

f ′iH̃i(x), (1.10)

where
Hi = (1− 2L′i(xi)(x− xi))Li(x)2

H̃i = (x− xi)Li(x)2

Note that

Hi(x) = H̃ ′i(x) =

{
1 if x = xi
0 if x ∈ {x0, · · ·xn} \{xi}



iv 1. Function Approximation

H̃i(x) = H ′i(x) =

{
0 if x = xi
0 if x ∈ {x0, · · ·xn} \{xi}

The approximation gets the function values right at all nodes because the
H̃i(xj) terms are all zero and the Hi(xj) terms are 1 at xj = xi and
zero otherwise. The approximation gets the derivatives right because the
Hi(xj) are all zero and the H̃i(xj) select with its zero/one structure the
appropriate derivative.

1.2.3 Orthogonal polynomials

From the discussion above, it became clear that finding the coeffi cients
of the polynomial is like a projection on the space spanned by the basis
function, i.e., like a regression. In any introductory econometrics course
one learns about the problem of multicollinearity and the advantage of
having uncorrelated explanatory variables. The same is true in function
approximation. Moreover, in numerical problems it is important to have
good initial conditions. The problem with the basis functions of regular
polynomials (i.e., 1, x, x2, etc.) is that these terms are often highly corre-
lated unless one has a lot of variation in the argument. Adding one addi-
tional polynomial term could thus very well mean that the coeffi cients of
all polynomial terms change substantially even if the extra terms has little
additional explanatory power.
Orthogonal polynomials are such that the basis functions are by con-

struction orthogonal with respect to a certain measure. That is, the basis
functions of all orthogonal polynomials satisfy∫ b

a

Ti(x)Tj(x)w(x)dx = 0 ∀i, j � i 6= j (1.11)

for some weighting function w(x). Popular orthogonal polynomials are
Chebyshev polynomials and the reason they are popular will become clear
below. Chebyshev polynomials are defined on the interval [−1, 1] and the
weighting function is given by

w(x) =
1

(1− x2)1/2 . (1.12)

The basis functions of the Chebyshev polynomials are given by

T c0 (x) = 1

T c1 (x) = x

T ci+1(x) = 2xT ci (x)− T ci−1(x) i > 1

Note that if one builds a polynomial with Chebyshev basis functions, i.e.,

f(x) ≈
n∑
j=0

ajT
c
j (x), (1.13)



1.2 Polynomial approximations v

then one also has a standard polynomial, i.e., of the form

b0 + b1x+ b2x
2 + · · ·+ bnxn,

where the bjs are functions of the ajs. The same is true for other orthogonal
polynomials. So the reason we use orthogonal polynomials is not that we
get a different type of product. The reason we use orthogonal polynomials
is that it is easier to find the coeffi cients, for example, because if one add
higher order terms good initial conditions are the coeffi cients one found
with the lower-order approximation.
Chebyshev polynomials are defined on a particular interval but note that

a continuous function on a compact interval can always be transformed so
that it is defined in this range.

1.2.4 Chebyshev nodes

We now define a concept of which the importance will become clear in the
remainder of this section. Chebyshev nodes are the x-values at which a
basis function is equal to zero. For example,

T c2 = 2x
2 − 1 (1.14)

and the corresponding roots are equal to −
√
1/2 and +

√
1/2. Similarly,

T c3 = 4x
3 − 3x (1.15)

and the roots are are equal to −
√
3/4, 0, and

√
3/4. If one wants

to construct n chebyshev nodes one thus takes the nth Chebyshev basis
function and finds the roots that set it equal to zero.

1.2.5 Uniform convergence

Weierstrass theorem implies that there are polynomial approximations that
converge uniformly towards the true function, because convergence in the
sup norm implies uniform convergence. To find this sequence, however, one
must be smart in choosing the points that one uses in the approximation.
If one uses observed data points one doesn’t have this degree of freedom,
but in many numerical problems one does. The flexibility to choose the
approximation points will turn out to be a great benefit in many numerical
problems.
It turns out that by fitting the polynomial at the Chebyshev nodes guar-

antees uniform convergence. A famous function to document how terrible
not having uniform convergence can be is:

f(x) =
1

1 + 25x2



vi 1. Function Approximation

defined on [−1, 1]. As an exercise you should compare the following two
strategies to find the coeffi cients of the approximating polynomial. The
first strategy finds the coeffi cients of the approximating polynomial using
n+ 1 equidistant points and its function values. The second strategy uses
Chebyshev nodes. The polynomials that one obtains with equidistant points
only converge point wise and as n increases one sees bigger and bigger
oscillations.
For a formal discussion one should read Judd (1998). But some intuition

of why Chebyshev nodes are so powerful can be obtained by thinking of
the formula for standard errors in a standard regression problem. If X is
the matrix with all the observations of the explanatory variables and σ2

the error variance, then the standard error is given by σ2(X ′X)−1. That is,
the further apart the x-values the smaller the standard error. Chebyshev
nodes are more spread towards the boundaries then equidistant points and,
thus, we obtain a more accurate approximation using polynomials fitted at
Chebyshev nodes.

1.2.6 Other types of basis functions

Orthogonal polynomials can be written as ordinary polynomials. They dif-
fer from ordinary polynomials by having different basis functions, but an
nth -order Chebyshev polynomial can be written as an nth -order regular
polynomial. Nevertheless one has quite a bit of flexibility with polynomial
approximations. For example, instead of approximating f(x) one can ap-
proximate f(exp x̃) = f(exp(lnx)). Or if one knows that the function value
is always positive one can approximate ln(f(x)).
Of course, one also could consider alternatives to using polynomial basis

functions. An alternative is to use neural nets. The idea behind neural nets
is very similar to using polynomial approximations but they use different
basis functions to build up the approximating function. In particular let x
be a vector with function arguments and let f : Rn → R. Then the neural
net approximation is given by

f(x) ≈
J∑
j=1

γjg(w
′
jx+ bj), (1.16)

where wj ∈ Rn, γj , bj ∈ R, and g : R → R is a scalar squashing function,
that is, a function with function values in the unit interval. Neural net
approximations are not very popular in macroeconomics. The reason is
that neural net approximations need quite a few parameters (layers) to
approximate low-order polynomials and many series in economics are well
approximated with polynomials. Neural nets have been more successful in
explaining time series with more chaotic behavior.



1.3 Splines vii

1.3 Splines

The approximation procedures discussed above all had in common that for
each possible argument at which one would like to evaluate the function,
there is one identical polynomial. The idea about splines is to split up the
domain into different regions and to use a different polynomial for each
region. This would be a good strategy if, the function can only be approxi-
mated well with a polynomial of a very high order over the entire domain,
but can be approximated well with a sequence of low-order polynomials for
different parts of the domain. The inputs to construct a spline are again
n+ 1 function values at n+ 1 nodes.
Splines can still be expressed as a linear combination of basis functions

which is the same for each possible argument, but this is not a polynomial.
The basis functions are zero over most of the domain. Thus splines take
a much more local approach and a change in a function value far away
from xi is much less likely to affect the approximation for f(xi) when using
splines then when using polynomial approximations.

Piece-wise linear

The easiest spline to consider is a piecewise linear interpolation. That is
for x ∈ [xi, xi+1]

f(x) ≈
(
1− x− xi

xi+1 − xi

)
fi +

(
x− xi

xi+1 − xi

)
fi+1.

nth -order spline

Piece-wise linear splines are in general not differentiable at the nodes and
this could be a disadvantage. But it is easy to deal with this by fitting a
(low-order) polynomial on each segment and choose the coeffi cients such
that it fits the function values at the nodes and the function is smooth at
the nodes. Consider what needs to be done to implement a cubic spline. A
cubic spline uses

f(x) ≈ ai + bix+ cix2 + dix3 for x ∈ [xi−1, xi].

Since we have n segments we have n separate cubic approximations and
thus 4n unknown coeffi cients. What are the conditions that we have to pin
down these coeffi cients?

• We have 2 + 2(n − 1) conditions to ensure that the function values
correspond to the given function values at the nodes. For the two
endpoints, x0 and xn+1, we only have one cubic that has to fit it
correctly. But for the intermediate nodes we need that the cubic ap-
proximations of both adjacent segments give the correct answer. For



viii 1. Function Approximation

example, we need that

f1 = a1 + b1x1 + c1x
2
1 + d1x

3
1 and

f1 = a2 + b2x1 + c2x
2
1 + d2x

3
1

• To ensure differentiability at the intermediate nodes we need

bi+2cixi+3dix
2
i = bi+1+2ci+1xi+3di+1x

2
i for xi ∈ {x1, · · · , xn−1},

which gives us n− 1 conditions.

With a cubic spline one can also ensure that second derivatives are equal.
That is,

2ci + 6dixi = 2ci+1 + 6di+1xi for xi ∈ {x1, · · · , xn−1}.

We now have 2+ 4(n− 1) = 4n− 2 conditions to find 4n unknowns. So we
need two additional conditions. For example, one can set the derivatives at
the end points equal to zero. There are several algorithms to find the coeffi -
cients of spline approximations. See for example the approximation tool kit
of Miranda and Fackler or the routines of Chapter 6 of Ken Judd’s website
at http://bucky.stanford.edu/numericalmethods/PUBCODE/DEFAULT.HTM

Coeffi cients of the spline

What are the coeffi cients of the spline? There are two answers. The first
answer is to say that the coeffi cients that determine the functional form
are the n+ 1 combinations for xi, fi. The other answer is to say that they
are all the coeffi cients of the separate polynomials. Both answers are, of
course, correct. But for latter applications it is more convenient to think of
the coeffi cients of the spline as the (xi, fi) pairs and when the nodes don’t
change, then the coeffi cients are just the n + 1 function values, i.e., the
fis. Now note that these values may not very directly reveal the function
value at an arbitrary x, but given that we do use a particular spline, these
function values pin down the spline and thus the approximating function
value at x. More importantly, if finding the approximating function is part
of a bigger numerical project then the goal is to find the n + 1 function
values at the nodes. Those completely pin down the solution.

1.4 Shape-preserving approximations

Polynomial approximations oscillate around the true function value. More-
over, these oscillations could be such that the approximating function does
not inherit important properties of the approximating function, such as
monotonicity or concavity. Can you approximate a function and preserve



1.5 Multi-variate polynomials ix

such properties? That is suppose that the n+1 function values satisfy prop-
erties such as being positive, monotonicity, and concavity. Can you come
up with an approximation that also has these properties?
If one uses one polynomial for the complete domain then this is more

likely to happen if one uses a low-order polynomial. But since the fit in
terms of distance may be worse for the low-order polynomial one could
face a trade-off between accuracy and desired shape.
Actually, there is one approximation we discussed that automatically

preserves monotonicity and concavity and that is the piece-wise linear ap-
proximation. That is, if the function f(x) is monotonic and concave, then
the n+ 1 function values will of course inherit these properties and so will
the interpolated values. Schumacher’s algorithm find’s second-order splines
that preserve (if present) monotonicity and concavity/convexity.

1.5 Multi-variate polynomials

1.5.1 Polynomial approximations

Extending polynomial approximations to multi-variate problems is very
easy. Just like one easily formulates multivariate polynomials using stan-
dard basis functions, one can also formulate multivariate polynomials using
other basis functions. For example, consider a function that has x and y
as arguments. Then the nth -order complete polynomial is given by∑

i+j≤n
Ti(x)Tj(y).

The nth -order tensor-product polynomial is given by∑
i≤n,j≤n

Ti(x)Tj(y).

1.5.2 Splines

Linear interpolation is easy for multivariate problems. Here I give the for-
mulas for the interpolation of a function that depends on x and y and one
has the four function values, fxy, for the (x, y) combinations equal to (a, c),
(b, c), (b, d), and (a, d). In this rectangle the interpolated value is given by

f(x, y) ≈

0.25 ∗
(
2− 2x−ab−a

)(
2− 2y−cd−c

)
fac

+0.25 ∗
(
2x−ab−a

)(
2− 2y−cd−c

)
fbc

+0.25 ∗
(
2x−ab−a

)(
2y−cd−c

)
fbd

+0.25 ∗
(
2− 2x−ab−a

)(
2y−cd−c

)
fad

(1.17)



x 1. Function Approximation

Since the right-hand side has the cross product of x and y this is a first-order
tensor but not a first-order complete polynomial. At the boundaries, i.e.,
the walls of the box, the function is linear, which means that the function
automatically coincides with the interpolated values of the box right next
to it.
Extending splines to multivariate problems is tricky. To see why think

about what one has to ensure to construct a two-dimensional spline. The
equivalent of the segment for the univariate case is now a box with the
floor representing the space of the two arguments. Now focus on the fitted
values on one of the walls. These function values and the corresponding
derivatives have to be equal to those on the wall of the box next to it. So
instead of enuring equality at a finite set of nodes one now has to ensure
equality at many points even in the two-dimensional case.

1.6 What type of approximation to use?

Before one uses any approximation method one should ask oneself what one
knows about the function. For example, it is possible that there are special
cases for which one knows the functional form. Also, sometimes one knows
that the functional form is more likely to be simple in the logs than in the
original arguments. This would be the case if one expects the elasticity of
f with respect to x to be fairly constant (as opposed to ∂f/∂x.
The big question one faces is whether one should use one (possibly high-

order) polynomial for the entire domain or several (possibly lower-order)
polynomials for separate segments. The latter doesn’t mean one has to use
splines with many segments. Using prior knowledge one can also split the
domain in a small number of separate regions, for example, a region where
a borrowing constraint is and one where it is not binding. For each of the
regions one than fits a separate approximating function. Note that for the
case of borrowing constraints one typically wouldn’t want the function at
the node that connects the two regions to be differentiable. So one really
could simply fit two polynomials on the two regions.


