Accuracy of models with heterogeneous agents

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Introduction

Models with heterogeneous agents have many different dimensions Krusell-Smith algorithm

- Numerical integration
 - Typically not a source of inaccuracy if you use quadrature & don't have too many sources of uncertainty
 - Test: Use more quadrature nodes and see whether results change
- Accuracy of individual policy rule (given aggregate rule)
 - **Test**: Use Euler equation errors; either at constructed fine grid or a points in simulation
- Accuracy of aggregate policy rule
 - Test: See below
- Be aware that errors of the the three blocks can interact with each other

Accuracy of aggregate law of motion

- Important to check its accuracy without imposing functional form assumption
- Given the complexity one typically has no choice but to use simulations to evaluate complete model
- So what are the inputs?
 - individual policy rule (fixed)
 - initial cross-sectional distribution over capital and employment status
 - a procedure to simulate the economy
 - a candidate aggregate law of motion which needs to be checked for accuracy

$$m_{t+1} = \bar{\phi}(z_{t+1}, z_t, m_t; \hat{\bar{\alpha}}) + u_{t+1}$$
 (1)

 $u_{t+1} \equiv 0$ for true transition law

Popular accuracy procedure

- Simulate a time series $\{m_t\}_{t=1}^T$ using *only* individual policy rules
- ullet Use those values for m_t in LHS and RHS of (1) and check error
 - KS simulataneously estimates $\bar{\alpha}$ but this is not necessary
- Accuracy measure is the R^2 (and the standard error of the regression)

Problems

- 1. Overfitting: adding higher-order terms can only improve your accuracy measures
 - should not be big problem with sample is large enough
- **2.** Bad to use same draw to estimate $ar{\phi}(\cdot)$ and evaluate accuracy
 - should not be big problem with sample is large enough

Problems

- **3.** R^2 and $\widehat{\sigma}_u$ are averages, which are weak measures
- **4.** R^2 scales errors. That is the R^2 of (1) is substantially higher than the R^2 of the following *identical* regression equation:

$$\Delta m_{t+1} = m_{t+1} - m_t = \bar{\phi}(z_{t+1}, z_t, m_t; \hat{\bar{\alpha}}) - m_t + u_{t+1}$$

- **5.** Not clear when an R^2 is low
 - inaccurate solution can easily have an \mathbb{R}^2 above 0.999 (see below)

But the real problem is:

- "true" law of motion is used to generate explanatory variables
- that is, each period the truth is used to update the approximation

What does a modification to KS law of motion do to the R^2 ?

$$\ln K_t = \alpha_1 + \alpha_2 a_t + \alpha_3 \ln K_{t-1} + u_t$$

$$\alpha_3 = 0.96404$$

$$R^2 = 0.99999729$$

Experiment:

- Change α_3
- Adjust α_1 to keep mean of u_t equal to zero
- Recalculate R²
- ullet Calculate implied standard deviation of $\ln K_t$ to evaluate magnitude of the change

		•	
$\alpha_3 = 0.9604$ (original regression)	0.99999729	0.0248	
$\alpha_3 = 0.954187$	0.99990000	0.0217	
$\alpha_2 = 0.9324788$	0.99900000	0.0174	

 R^2

0.99000000

implied standard dev

0.0113

These updates in α_3 change the dgp considerably but not the R^2

 $\alpha_3 = 0.8640985$

Better accuracy procedure

- Generate series independently using only same aggregate shocks and initial distribution
 - **1** As above generate a time series $\{m_t\}$ by simulating
 - Without using this time series generate a new series using the candidate aggregate law of motion
- Calculate the max and check at what kind of observation it occurs
- 3 Plot both time series = essential accuracy plot
- Compare some properties of the two laws of motion e.g., impulse response functions

What did Krusell & Smith use?

- They emphasized the R^2 and $\hat{\sigma}_u$
- But they also looked at many other measues
 - alternative functional forms
 - economic arguments
 - 100 period-ahead forecast errors (This turns out to be just as powerful as max of procedure proposed above)

Monte Carle example #1

Truth is given by

$$m_{t+1} = \alpha_0 + \alpha_1 m_t + \alpha_2 a_t + \alpha_3 m_{t-1}$$

Approximating law of motion

$$m_{t+1} = \bar{\alpha}_0 + \bar{\alpha}_1 m_t + \bar{\alpha}_2 a_t$$

Monte Carlo example #2

Truth is given by

$$m_{t+1} = \alpha_0 + \alpha_{1,t} m_t + \alpha_2 a_t.$$

$$\alpha_{1,t} = \left(\alpha_1 + \frac{\alpha_3}{\alpha_4 \exp(-\alpha_5 m_t)}\right)$$

Approximating law of motion

$$m_{t+1} = \bar{\alpha}_0 + \bar{\alpha}_1 m_t + \bar{\alpha}_2 a_t$$

Traditional accuracy test

 R^2 0.9995 0.9940 0.99983 0.99981

minimum across Monte Carlo replications (that is, there are even higher ones)

Figure 1: In-sample fit of approximating law of motion Panel A: Experiment 1.1

Panel B: Experiment 1.2

Figure 2: The essential accuracy plot – Separately generated series Panel A: Experiment 1.1

Panel B: Experiment 1.2

Figure 3: Impulse response functions Panel A: Experiment 1.1

Panel B: Experiment 1.2

Figure 4: The essential accuracy plot – Separately generated series Panel A: Experiment 2.1

Panel B: Experiment 2.2

Figure 5: The essential accuracy plot – Separately generated series Experiment 2.2 – part of simulation where maximum error occurs

Figure 6: Impulse response functions Panel A: Experiment 2.1

Panel B: Experiment 2.2

Figure 7: The essential accuracy plot – Separately generated series Krusell-Smith economy

Figure 8: Impulse response function in the KS economy

New accuracy test

minimum across Monte Carlo replications, that is, even in the best Monte Carlo are the errors not that small

References

 Den Haan, W.J., 2010, Assessing the Accuracy of the Aggregate Law of Motion in Models with Heterogeneous Agents, Journal of Economic Dynamics and Control.