Parameterized Expectations Algorithm

Wouter J. Den Haan
London School of Economics

© by Wouter J. Den Haan
Overview

- Two PEA algorithms
- Explaining simulations PEA
- Advantages and disadvantages
- Improvements of Maliar, Maliar & Judd
- PEA to introduce learning
Model

\[
\begin{align*}
 c_t^{-\nu} &= \mathbb{E}_t \left[\beta c_{t+1}^{-\nu} \left(\alpha z_{t+1} k_{t+1}^{\alpha-1} + 1 - \delta \right) \right] \\
 c_t + k_{t+1} &= z_t k_t^\alpha + (1 - \delta) k_t \\
 \ln(z_{t+1}) &= \rho \ln(z_t) + \epsilon_{t+1} \\
 \epsilon_{t+1} &\sim N(0, \sigma^2) \\
 k_1, z_1 &\text{ given}
\end{align*}
\]

\(k_t \) is beginning-of-period \(t \) capital stock
Two types of PEA

1. As a standard projections algorithm:
 1. parameterize $E_t[\cdot]$ with $P_n(k_t, z_t; \eta_n)$
 (note that $E_t[\cdot]$ is a function of the usual state variables.)
 2. solve c_t from
 \[
 c_t = (P_n(k_t, z_t; \eta_n))^{-1/\nu}
 \]
 and k_{t+1} from budget constraint
 3. $$\implies$$ only difference is that $E_t[\cdot]$ is parameterized instead of consumption or capital choice.

2. Simulation PEA (stochastic and non-stochastic)
Stochastic PEA based on simulations

1. Simulate $\{z_t\}_{t=1}^T$

2. Let η_n^1 be initial guess for η_n
Stochastic PEA

3 Iterate until η^i_n converges using following scheme

1. Generate $\{c_t, k_{t+1}\}^{T}_{t=1}$ using

 $c_t^{-\nu} = P_n(k_t, z_t; \eta^i_n)$

 $k_{t+1} = z_t k_t^\alpha + (1 - \delta) k_t - c_t$

2. Generate $\{y_{t+1}\}^{T-1}_{t=1}$ using

 $y_{t+1} = \beta c_{t+1}^{-\nu} \left(\alpha z_{t+1} k_{t+1}^{\alpha-1} + 1 - \delta \right)$

3. Let

 $\hat{\eta}^i_n = \arg \min \sum_{t=T_{\text{begin}}}^{T} \frac{(y_{t+1} - P_n(k_t, z_t; \eta))^2}{T}$

4. Update using

 $\eta^{i+1}_n = \omega \hat{\eta}_n^i + (1 - \omega) \eta^i_n$ with $0 < \omega \leq 1$
Stochastic PEA

• $T_{\text{begin}} \gg 1$ (say 500 or 1,000)
 • ensures possible bad period 1 values don’t matter

• $\omega < 1$ improves stability
 • ω is called ”dampening” parameter
Stochastic PEA

• Idea of regression:

\[y_{t+1} \approx P_n(k_t, z_t; \eta) + u_{t+1}, \]

• \(u_{t+1} \) is a prediction error \(\implies u_{t+1} \) is orthogonal to regressors

• Suppose

\[P_n(k_t, z_t; \eta) = \exp \left(a_0 + a_1 \ln k_t + a_2 \ln z_t \right). \]

• You are not allowed to run the linear regression

\[\ln y_{t+1} = a_0 + a_1 \ln k_t + a_2 \ln z_t + u_{t+1}^* \]

Why not?
PEA & RE

- Suppose η_n^* is the fixed point we are looking for
- So with η_n^* we get best predictor of y_{t+1}
- Does this mean that solution is a rational expectations equilibrium?
Disadvantages of stoch. sim. PEA

• The inverse of $X'X$ may be hard to calculate for higher-order approximations

• Regression points are clustered \implies low precision

 • recall that even equidistant nodes are not enough for uniform convergence; with simulated date, the ”nodes” are even less spread out with stochastic PEA)
Disadvantages of stochastic PEA

- Projection step has sampling error
 - this disappears slowly (especially with serial correlation)
Advantages of simulated nodes

- Regression points are clustered

\implies better fit *where it matters* IF functional form is poor
(with good functional form it is better to spread out points)
Advantages of simulated nodes

• **BIG ADVANTAGE:** Not subject to the exponential curse of dimensionality as standard projection methods.
Advantages of simulated nodes

- Grid: you may include impossible points

Simulation: model itself tells you which nodes to include

- (approximation also important and away from fixed point you may still get in weird places of the state space)
Odd shapes ergodic set in matching model
Non-stochastic Simulations PEA

Improvements from Maliar, Maliar & Judd (2010,2011)

1. Use flexibility given to you

2. Use $\hat{E}[y_{t+1}]$ instead of y_{t+1} as regressand
 - $\hat{E}[y_{t+1}]$ is numerical approximation of $E[y_{t+1}]$
 - even with poor approximation the results improve !!!

3. Improve regression step
Use flexibility

Many $E[]$’s to approximate.

1. **Standard approach:**

$$c_t^{-\nu} = E_t \left[\beta c_{t+1}^{-\nu} \alpha \beta c_{t+1}^{-\nu} \left(\alpha z_{t+1} k_{t+1}^{\alpha-1} + 1 - \delta \right) \right]$$

2. **Alternative:**

$$k_{t+1} = E_t \left[k_{t+1} \beta \alpha \beta \left(\frac{c_{t+1}}{c_t} \right)^{-\nu} \left(\alpha z_{t+1} k_{t+1}^{\alpha-1} + 1 - \delta \right) \right]$$

- Such transformations can make computations easier, but can also affect stability of algorithm (for better or worse)
E[y] instead of y as regressor

- $E[y_{t+1}] = E[f(\varepsilon_{t+1})]$ with $\varepsilon_{t+1} \sim N(0, \sigma^2)$
 \implies Hermite Gaussian quadrature can be used
 (MMJ: using $\hat{E}[y_{t+1}]$ calculated using one node is better than using y_{t+1})

- Key thing to remember: sampling uncertainty is hard to get rid off
E[y] instead of y as regressor

• Suppose:

\[y_{t+1} = \exp(a_0 + a_1 \ln k_t + a_2 \ln z_t) + u_{t+1} \]
\[u_{t+1} = \text{prediction error} \]

• Then you cannot estimate coefficients using LS based on

\[\ln (y_{t+1}) = a_0 + a_1 \ln k_t + a_2 \ln z_t + u_{t+1}^* \]

• You have to use non-linear least squares
E[y] instead of y as regressor

- Suppose:

\[
E[y_{t+1}] = \exp(a_0 + a_1 \ln k_t + a_2 \ln z_t) + \bar{u}_{t+1}
\]

\[
\bar{u}_{t+1} = \text{numerical error}
\]

- Then you can estimate coefficients using LS based on

\[
\ln E[y_{t+1}] = a_0 + a_1 \ln k_t + a_2 \ln z_t + \bar{u}^*_{t+1}
\]

- Big practical advantage
Simple way to improve regression

• The main underlying problem is that $X'X$ is ill conditioned which makes it difficult to calculate $X'X$

• This problem is reduced by

1. Scaling so that each variable has zero mean and unit variance
2. Hermite polynomials
Hermite polynomials; Definition

\[P_n(x) = \sum_{j=0}^{n} a_j H_j(x) \]

where the basis functions, \(H_j(x) \), satisfy

\[E[H_i(x)H_j(x)] = 0 \text{ for } i \neq j \]

if \(x \sim N(0,1) \)
Hermite polynomials; Construction

\[H_0(x) = 1 \]
\[H_1(x) = x \]
\[H_{m+1}(x) = xH_m(x) - mH_{m-1}(x) \text{ for } j > 1 \]

This gives

\[H_0(x) = 1 \]
\[H_1(x) = x \]
\[H_2(x) = x^2 - 1 \]
\[H_3(x) = x^3 - 3x \]
\[H_4(x) = x^4 - 6x^2 + 3 \]
\[H_5(x) = x^5 - 10x^3 + 15x \]
One tricky aspect about scaling

Suppose one of the explanatory variables is

\[x_t = \frac{k_t - M_T}{S_T} \]

\[M_T = \sum_{t=1}^{T} k_t / T \] & \[S_T = \left(\sum_{t=1}^{T} (k_t - M_T)^2 / T \right)^{1/2} \]
One tricky aspect about scaling

- ⇒ each iteration the explanatory variables change (since M and S change)
- ⇒ taking a weighted average of old and new coefficient is odd
- I found that convergence properties can be quite bad
- So better to keep M_T and S_T fixed across iterations
Two graphs say it all; regular polynomials
Two graphs say it all; Hermite polynomials
More ways to improve regression

1. LS-Singular Value Decomposition

2. Principal components

See Maliar, Maliar, Judd (2010,2011) for details.
PEA and learning

- Traditional algorithm:
 - simulate an economy using belief η_n^i
 - formulate new belief η_n^{i+1}
 - simulate *same* economy using belief η_n^{i+1}
PEA and learning

- Alternative algorithm to find *fixed point*
 - simulate T observations using belief η_{n}^{T-1}
 - formulate new belief η_{n}^{T}
 - generate 1 more observation
 - use $T + 1$ observations to formulate new belief η_{n}^{T+1}
 - continue

When convergence has taken place is more difficult to determine, since each additional observation has smaller weight since T increases.
PEA and learning

• Modification of alternative algorithm is economically interesting
 • simulate T observations using belief η^{T-1}_n
 • use τ observations to formulate new belief η^T_n
 • generate 1 more observation
 • use last τ observations to formulate new belief η^{T+1}_n
 • continue

• Beliefs are based on limited past \rightarrow time-varying beliefs
PEA and learning

• Suppose the model has different regimes
 • e.g. high productivity and low productivity regime
 • agents do not observe regime\[\rightarrow\] it makes sense to use limited number of past observations

• With the above algorithm agents gradually learn new law of motion
References

• Den Haan, W.J., Parameterized expectations, lecture notes.

• Judd, K. L. Maliar, and S. Maliar, 2011, One-node quadrature beats Monte Carlo: A generalized stochastic simulation algorithm, NBER WP 16708

• Judd, K. L. Maliar, and S. Maliar, 2010, Numerically stable stochastic methods for solving dynamics models, NBER WP 15296